3.在等比數(shù)列{an}中,a1+a2+a3+a4+a5=27,$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+\frac{1}{a_5}$=3,則a3=( 。
A.±9B.9C.3D.±3

分析 根據(jù)等比數(shù)列的定義,可得$\left\{\begin{array}{l}{a_3}({\frac{1}{q^2}+\frac{1}{q}+1+q+{q^2}})=27\\ \frac{1}{a_3}×({{q^2}+q+1+\frac{1}{q}+\frac{1}{q^2}})=3\end{array}\right.$,即可求出答案.

解答 解:設(shè)公比為q,
由已知可得$\left\{\begin{array}{l}{a_3}({\frac{1}{q^2}+\frac{1}{q}+1+q+{q^2}})=27\\ \frac{1}{a_3}×({{q^2}+q+1+\frac{1}{q}+\frac{1}{q^2}})=3\end{array}\right.$,
兩式相除可得,${a_3}^2=9$,
所以a3=±3.當(dāng)a3=-3時,此時$\frac{1}{{q}^{2}}$+$\frac{1}{q}$+1+q+q2=-9,化簡為$\frac{(1+q)^{2}}{{q}^{2}}$(q2-q+1)=-9,此方程無解,故舍去,
故選:C.

點(diǎn)評 本題考查了等比數(shù)列的性質(zhì)和方程組的解法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知雙曲線$\frac{x^2}{a^2}-{y^2}=1(a>0)$的實(shí)軸長、虛軸長、焦距長成等差數(shù)列,則雙曲線的漸近線方程為y=±$\frac{4}{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合M={x|log2x<2},N={0,1,3,5},則M∩N=( 。
A.(0,4)B.{1,3}C.{0,1,3}D.{1,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.拋物線y2=2px(p>0)上點(diǎn)P的橫坐標(biāo)為6,且點(diǎn)P到焦點(diǎn)F的距離為10,則焦點(diǎn)到準(zhǔn)線的距離為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+2),x<2}\\{(\frac{1}{2})^{x},x>2}\end{array}\right.$,則f(1)的值為$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.cos40°cos 20°+sin(-40°)sin20°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若m、n為兩條不重合的直線,α、β為兩個不重合的平面,則下列命題中真命題的序號是( 。
①若m、n都平行于平面α,則m、n一定不是相交直線;
②若m、n都垂直于平面α,則m、n一定是平行直線;
③已知α、β互相平行,m、n互相平行,若m∥α,則n∥β;
④若m、n在平面α內(nèi)的射影互相平行,則m、n互相平行.
A.①③B.C.①③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在等差數(shù)列{an}中,a1=1,前n項(xiàng)和Sn滿足條件$\frac{{{S_{2n}}}}{S_n}$=$\frac{4n+2}{n+1}$,n=1,2,…
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=$a_n(\frac{1}{2})^{a_n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在如圖所示的銳角三角形空地中,欲建立一個內(nèi)接矩形花園(陰影部分),則其邊長為x(單位:m),設(shè)花園面積為S,
(Ⅰ)將S表示成x的函數(shù),求該函數(shù)的解析式及定義域;
(Ⅱ)欲建一個面積最大的內(nèi)接矩形花園,求其邊長x的值;
(Ⅲ)欲建一個面積不小于300m2的內(nèi)接矩形花園,求其邊長x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案