8.cos40°cos 20°+sin(-40°)sin20°=$\frac{1}{2}$.

分析 利用誘導(dǎo)公式、兩角差的余弦公式,化簡要求的式子,可得結(jié)果.

解答 解:cos40°cos 20°+sin(-40°)sin20°=cos40°cos 20°-sin40°sin20°=cos(40°+20°)=cos60°=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.

點(diǎn)評 本題主要考查誘導(dǎo)公式、兩角差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)D為△ABC所在平面內(nèi)一點(diǎn),$\overrightarrow{BC}=3\overrightarrow{CD}$,則$\overrightarrow{AD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,則m和n的值分別為$m=-\frac{1}{3},n=\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{a}-\frac{1}{x}$(a>0,x>0).
(1)求證:f(x)在(0,+∞)上是單調(diào)遞增函數(shù);
(2)若f(x)在區(qū)間x∈[$\frac{1}{2}$,b]上的值域是[$\frac{1}{2}$,2],求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列推理合理的是(  )
A.f(x)是增函數(shù),則f′(x)>0
B.因?yàn)閍>b(a,b∈R),則a+2i>b+2i(i是虛數(shù)單位)
C.α,β是銳角△ABC的兩個(gè)內(nèi)角,則sin α>cos β
D.A是三角形ABC的內(nèi)角,若cos A>0,則此三角形為銳角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在等比數(shù)列{an}中,a1+a2+a3+a4+a5=27,$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+\frac{1}{a_5}$=3,則a3=( 。
A.±9B.9C.3D.±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.邊長為$\sqrt{5}$的等邊△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$等于( 。
A.$-\frac{5}{2}$B.$\frac{5}{2}$C.0D.$\frac{{5\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.${0.027^{-\frac{1}{3}}}$+$log_{25}^{\;}100$-$log_5^{\;}2$=$\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤8}\end{array}}\right.$,則函數(shù)z=x+y+m的最小值為-2,則實(shí)數(shù)m為(  )
A.-4B.-3C.-2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)化簡$\frac{sin(2π-α)•tan(π-α)•cos(-π+α)}{{sin(5π+α)•sin(\frac{π}{2}+α)}}$
(2)求函數(shù)f(x)=2cosx-cos2x的最大值及對應(yīng)的x值.

查看答案和解析>>

同步練習(xí)冊答案