【題目】在如圖所示的多面體中,四邊形ABB1A1和ACC1A1都為矩形
(Ⅰ)若AC⊥BC,證明:直線BC⊥平面ACC1A1;
(Ⅱ)設(shè)D、E分別是線段BC、CC1的中點(diǎn),在線段AB上是否存在一點(diǎn)M,使直線DE∥平面A1MC?請(qǐng)證明你的結(jié)論.

【答案】證明:(Ⅰ)∵四邊形ABB1A1和ACC1A1都為矩形,
∴AA1⊥AB,AA1⊥AC,
∵AB∩AC=A,
∴AA1⊥平面ABC,
∵BC平面ABC,
∴AA1⊥BC,
∵AC⊥BC,AA1∩AC=A,
∴直線BC⊥平面ACC1A1;
(Ⅱ)解:取AB的中點(diǎn)M,連接A1M,MC,A1C,AC1 , 設(shè)O為A1C,AC1的交點(diǎn),則O為AC1的中點(diǎn).
連接MD,OE,則MD∥AC,MD=AC,OE∥AC,OE=AC,
∴MD∥OE,MD=OE,
連接OM,則四邊形MDEO為平行四邊形,
∴DE∥MO,
∵DE平面A1MC,MO平面A1MC,
∴DE∥平面A1MC,
∴線段AB上存在一點(diǎn)M(線段AB的中點(diǎn)),使直線DE∥平面A1MC.

【解析】(Ⅰ)先證明AA1⊥平面ABC,可得AA1⊥BC,利用AC⊥BC,可以證明直線BC⊥平面ACC1A1;
(Ⅱ)取AB的中點(diǎn)M,連接A1M,MC,A1C,AC1 , 證明四邊形MDEO為平行四邊形即可.
【考點(diǎn)精析】關(guān)于本題考查的直線與平面平行的判定和直線與平面垂直的性質(zhì),需要了解平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;垂直于同一個(gè)平面的兩條直線平行才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級(jí)籽棉2噸、二級(jí)籽棉1噸;生產(chǎn)乙種棉紗1噸需耗一級(jí)籽棉1噸,二級(jí)籽棉2噸.每1噸甲種棉紗的利潤(rùn)為900元,每1噸乙種棉紗的利潤(rùn)為600元.工廠在生產(chǎn)這兩種棉紗的計(jì)劃中,要求消耗一級(jí)籽棉不超過(guò)250噸,二級(jí)籽棉不超過(guò)300噸.問(wèn)甲、乙兩種棉紗應(yīng)各生產(chǎn)多少噸,能使利潤(rùn)總額最大?并求出利潤(rùn)總額的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為 ( )

(參考數(shù)據(jù):

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修44:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,A,B兩點(diǎn)的極坐標(biāo)分別為.

()求圓C的普通方程和直線的直角坐標(biāo)方程;

()點(diǎn)P是圓C上任一點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)的矩形),被截取一角(即), ,平面平面 .

(1)證明: ;

(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中,稱一個(gè)正方體內(nèi)兩個(gè)互相垂直的內(nèi)切圓柱所圍成的立體為“牟合方蓋”,如圖(1)(2),劉徽未能求得牟合方蓋的體積,直言“欲陋形措意,懼失正理”,不得不說(shuō)“敢不闕疑,以俟能言者”.約200年后,祖沖之的兒子祖暅提出“冪勢(shì)既同,則積不容異”,后世稱為祖暅原理,即:兩等高立體,若在每一等高處的截面積都相等,則兩立體體積相等.如圖(3)(4),祖暅利用八分之一正方體去掉八分之一牟合方蓋后的幾何體與長(zhǎng)寬高皆為八分之一正方體的邊長(zhǎng)的倒四棱錐“等冪等積”,計(jì)算出牟合方蓋的體積,據(jù)此可知,牟合方蓋的體積與其外切正方體的體積之比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面α過(guò)正方體ABCD﹣A1B1C1D1的頂點(diǎn)A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面AB B1A1=n,則m,n所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且曲線處的切線與平行.

(1)求的值;

(2)當(dāng)時(shí),試探究函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組中的兩個(gè)函數(shù)是同一函數(shù)的為( )
(1)f(x)=1,g(x)=x0
(2)f(x)= ,g(x)=
(3)f(x)=lnxx , g(x)=elnx
(4)f(x)= ,g(x)=
A.(1)
B.(2)
C.(3)
D.(4)

查看答案和解析>>

同步練習(xí)冊(cè)答案