【題目】平面α過正方體ABCD﹣A1B1C1D1的頂點A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面AB B1A1=n,則m,n所成角的正弦值為 .
【答案】
【解析】解:如圖:
α∥平面CB1D1 , α∩平面ABCD=m,α∩平面ABA1B1=n,
可知:n∥CD1 , m∥B1D1 ,
∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.
則m、n所成角的正弦值為: .
所以答案是: .
【考點精析】解答此題的關(guān)鍵在于理解異面直線及其所成的角的相關(guān)知識,掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題:已知實數(shù), 滿足約束條件,二元一次不等式恒成立,
命題:設(shè)數(shù)列的通項公式為,若,使得.
(1)分別求出使命題, 為真時,實數(shù)的取值范圍;
(2)若命題與真假相同,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),實數(shù)是常數(shù).
(Ⅰ)若=2,函數(shù)圖像上是否存在兩條互相垂直的切線,并說明理由.
(Ⅱ)若在上有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體中,四邊形ABB1A1和ACC1A1都為矩形
(Ⅰ)若AC⊥BC,證明:直線BC⊥平面ACC1A1;
(Ⅱ)設(shè)D、E分別是線段BC、CC1的中點,在線段AB上是否存在一點M,使直線DE∥平面A1MC?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(a+1)x+1(a∈R)
(1)若關(guān)于x的不等式f(x)>0的解集為R,求實數(shù)a的取值范圍;
(2)若關(guān)于x的不等式f(x)≤0的解集為P,集合Q={x|0≤x≤1},若P∩Q=,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(2x﹣1)的定義域為[﹣1,4],則函數(shù)f(x)的定義域為( 。
A.(﹣3,7]
B.[﹣3,7]
C.(0,]
D.[0,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線(其中為參數(shù), 為傾斜角).以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求的直角坐標方程,并求的焦點的直角坐標;
(2)已知點,若直線與相交于兩點,且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點作一直線與拋物線交于兩點,點是拋物線上到直線: 的距離最小的點,直線與直線交于點.
(Ⅰ)求點的坐標;
(Ⅱ)求證:直線平行于拋物線的對稱軸.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com