如圖所示,AB、CD都是圓的弦,且AB∥CD,F(xiàn)為圓上一點,延長FD、AB交于點E.

求證:AE·AC=AF·DE.

見解析

解析證明 連接BD,因為AB∥CD,所以BD=AC.

因為A、B、D、F四點共圓,所以∠EBD=∠F.
因為∠E為△EBD和△EFA的公共角,
所以△EBD∽△EFA.
所以.
所以,
即AE·AC=AF·DE.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,E是圓O內(nèi)兩弦AB和CD的交點,過AD延長線上一點F作圓O的切線FG,G為切點,已知EF=FG.

求證:(1);(2)EF//CB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,AB∥CD,OD2=OB·OE.

求證:AD∥CE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,四邊形ABCD的邊AB、BC、CD、DA和⊙O分別相切于點L、M、N、P.

求證:AB+CD=AD+BC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,D為△ABC中BC邊上的一點,∠CAD=∠B,若AD=6,AB=10,BD=8,求CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,在梯形ABCD中,已知AD∥BC,DC⊥BC,∠B=60°,BC=AB,E為AB的中點.

求證:△ECD為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,△ABC的角平分線AD的延長線交它的外接圓于點E.

(1)證明:△ABE∽△ADC;
(2)若△ABC的面積SAD·AE,求∠BAC的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,MN為兩圓的公共弦,一條直線與兩圓及公共弦依次交于A,B,C,D,E,
求證:AB·CD=BC·DE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,點是以線段為直徑的圓上一點,于點,過點作圓的切線,與的延長線交于點,點的中點,連結(jié)并延長與相交于點,延長的延長線相交于點.

(Ⅰ)求證:;
(Ⅱ)求證:是圓的切線.

查看答案和解析>>

同步練習冊答案