精英家教網 > 高中數學 > 題目詳情

如圖,MN為兩圓的公共弦,一條直線與兩圓及公共弦依次交于A,B,C,D,E,
求證:AB·CD=BC·DE.

詳見解析

解析試題分析:由相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等,得利用等量代換,得到結合要證的結論,將轉化為變形即得結論.
試題解析:證明:由相交弦定理,得


     3分
     6分
也即
     10分
考點:相交弦定理.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖所示,已知圓O外有一點P,作圓O的切線PM,M為切點,過PM的中點N,作割線NAB,交圓于A、B兩點,連接PA并延長,交圓O于點C,連接PB交圓O于點D,若MC=BC.

(1)求證:△APM∽△ABP;
(2)求證:四邊形PMCD是平行四邊形.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,AB、CD都是圓的弦,且AB∥CD,F(xiàn)為圓上一點,延長FD、AB交于點E.

求證:AE·AC=AF·DE.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,直線AB為圓O的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于點D.

(1)證明:DBDC
(2)設圓的半徑為1,BC,延長CEAB于點F,求△BCF外接圓的半徑.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,內接于上,,于點E,點F在DA的延長線上,,求證:

(1)的切線;
(2).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,AB是⊙O的直徑 ,AC是弦 ,∠BAC的平分線AD交⊙O于點D,DE⊥AC,交AC的延長線于點E.,OE交AD于點F.

(I)求證:DE是⊙O的切線;
(II)若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,、是圓的半徑,且,是半徑上一點:延長交圓于點,過作圓的切線交的延長線于點.求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,己知邊上一點,經過點,交于另一點,經過點,,交于另一點,的另一交點為.

(I)求證:四點共圓;
(II)若,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,是圓的內接四邊形,,過點的圓的切線與的延長線交于點,證明:

(Ⅰ)
(II)

查看答案和解析>>

同步練習冊答案