【題目】已知p:x2-5ax+4a2<0,其中a>0,q:3<x≤4.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
【答案】(1);(2)
【解析】
試題分析:(1)p:x2﹣5ax+4a2<0,其中a>0,解得:a<x<4a;由于a=1,p化為:1<x<4.利用p∧q為真,求交集即可得出.
(2)p是q的必要不充分條件,可得qp,且p推不出q,設(shè)A=(a,4a),B=(3,4],則BA,即可得出.
解:(1)p:x2﹣5ax+4a2<0,其中a>0,解得:a<x<4a;q:3<x≤4.
∵a=1,∴p化為:1<x<4.
∵p∧q為真,∴,解得3<x≤4,∴實(shí)數(shù)x的取值范圍是(3,4].
(2)p是q的必要不充分條件,∴qp,且p推不出q,設(shè)A=(a,4a),B=(3,4],
則BA,
∴,解得1<a≤3.
∴實(shí)數(shù)a的取值范圍是1<a≤3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣mlnx在[2,+∞)上單調(diào)遞增,則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)口袋中裝有n個(gè)紅球(n≥1且n∈N+)和2個(gè)白球,從中有放回地連續(xù)摸三次,每次摸出2個(gè)球,若2個(gè)球顏色不同則為中獎(jiǎng),否則不中獎(jiǎng).
(1)當(dāng)n=3時(shí),設(shè)三次摸球中中獎(jiǎng)的次數(shù)為X,求隨機(jī)變量X的分布列;
(2)記三次摸球中恰有兩次中獎(jiǎng)的概率為P,求當(dāng)n取多少時(shí),P的值最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)市場(chǎng)調(diào)查,某旅游城市在過(guò)去的一個(gè)月內(nèi)(以30天計(jì)),第t天(1≤t≤30,t∈N*)的旅游人數(shù)f(t)(單位:萬(wàn)人)近似地滿足f(t)=4+ ,而人均日消費(fèi)俄g(t)(單位:元)近似地滿足g(t)= .
(1)試求所有游客在該城市旅游的日消費(fèi)總額W(t)(單位:萬(wàn)元)與時(shí)間t(1≤t≤30,t∈N*)的函數(shù)表達(dá)式;
(2)求所有游客在該城市旅游的日消費(fèi)總額的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】購(gòu)買(mǎi)一件售價(jià)為5 000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購(gòu)買(mǎi)后1個(gè)月付款一次,過(guò)1個(gè)月再付款一次,如此下去,到第12次付款后全部付清.如果月利率為0.8%,每月利息按復(fù)利計(jì)算(上月利息計(jì)入下月本金),那么每期應(yīng)付款多少元?(精確到1元)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某海上養(yǎng)殖基地A,接到氣象部門(mén)預(yù)報(bào),位于基地南偏東60°方向相距20(+1)海里的海面上有一臺(tái)風(fēng)中心,影響半徑為20海里,正以每小時(shí)10海里的速度沿某一方向勻速直線前進(jìn),預(yù)計(jì)臺(tái)風(fēng)中心在基地東北方向時(shí)對(duì)基地的影響最強(qiáng)烈且(+1)小時(shí)后開(kāi)始影響基地持續(xù)2小時(shí),求臺(tái)風(fēng)移動(dòng)的方向.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于直線x=1對(duì)稱,且當(dāng)x∈(﹣∞,0)時(shí),f(x)+xf′(x)<0成立若a=(20.2)f(20.2),b=(1n2)f(1n2),c=( )f( ),則a,b,c的大小關(guān)系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=10n﹣n2(n∈N*),又bn=|an|(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com