【題目】某海上養(yǎng)殖基地A,接到氣象部門預(yù)報,位于基地南偏東60°方向相距20(+1)海里的海面上有一臺風(fēng)中心,影響半徑為20海里,正以每小時10海里的速度沿某一方向勻速直線前進,預(yù)計臺風(fēng)中心在基地東北方向時對基地的影響最強烈且(+1)小時后開始影響基地持續(xù)2小時,求臺風(fēng)移動的方向.

【答案】北偏西45°方向

【解析】

先求出AB=20(+1),DC=20,BC=(+1)×10,再求得∠DAC=90°,∠ADC=45°.再利用余弦定理求出cos∠BAC=,即得∠BAC=30°.再求出臺風(fēng)移動的方向.

如圖所示,設(shè)預(yù)報時臺風(fēng)中心為B,開始影響基地時臺風(fēng)中心為C,基地剛好不受影響時臺風(fēng)中心為D,則B,C,D在一條直線上,且AD=20,AC=20.

由題意知AB=20(+1),DC=20,BC=(+1)×10.

在△ADC中,因為DC2=AD2+AC2,所以∠DAC=90°,∠ADC=45°.

在△ABC中,由余弦定理得cos∠BAC=.所以∠BAC=30°.

又因為B位于A南偏東60°方向,60°+30°+90°=180°,所以D位于A的正北方向.

又因為∠ADC=45°,所以臺風(fēng)移動的方向為向量的方向,即北偏西45°方向.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,已知(a-3b)cos C=c(3cos B-cos A).

(1)求的值; (2)若c=a,求角C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,曲線C2的極坐標(biāo)方程為 (a>0).

(1)求直線l與曲線C1的交點的極坐標(biāo)(ρ,θ)(ρ≥0,0≤θ<2π);

(2)若直線lC2相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:x2-5ax+4a2<0,其中a>0,q:3<x≤4.

(1)a=1,p∧q為真,求實數(shù)x的取值范圍;

(2)pq的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn,且Sn=4an﹣p,其中p是不為零的常數(shù).

(1)證明:數(shù)列{an}是等比數(shù)列;

(2)當(dāng)p=3時,若數(shù)列{bn}滿足bn+1=bn+an(nN*),b1=2,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,∠ACB=45°,BC=3,過動點A作AD⊥BC,垂足D在線段BC上且異于點B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示),

(1)當(dāng)BD的長為多少時,三棱錐A﹣BCD的體積最大;
(2)當(dāng)三棱錐A﹣BCD的體積最大時,設(shè)點E,M分別為棱BC,AC的中點,試在棱CD上確定一點N,使得EN⊥BM,并求EN與平面BMN所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體ABCD中,AB,BC,BD兩兩垂直,BC=BD=2,點E是CD的中點,異面直線AD與BE所成角的余弦值為,則直線BE與平面ACD所成角的正弦值為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小型工廠安排甲、乙兩種產(chǎn)品的生產(chǎn),已知工廠生產(chǎn)甲、乙兩種產(chǎn)品每噸所需要的原材料A,B,C的數(shù)量和一周內(nèi)可用資源數(shù)量如下表所示:

原材料

甲(噸)

乙(噸)

資源數(shù)量(噸)

A

1

1

50

B

4

0

160

C

2

5

200

如果甲產(chǎn)品每噸的利潤為300元,乙產(chǎn)品每噸的利潤為200元,那么適當(dāng)安排生產(chǎn)后,工廠每周可獲得的最大利潤為______元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形ABC中,角A,B,C的對邊分別為a,b,c,已知sinA= ,tan(A﹣B)=﹣
(1)求tanB的值;
(2)若b=5,求c.

查看答案和解析>>

同步練習(xí)冊答案