1.平面向量$\overrightarrow a,\overrightarrow b$滿足$|\overrightarrow a|=4,|\overrightarrow b|=2$,$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$上的投影為5,則$|\overrightarrow a-2\overrightarrow b|$的模為(  )
A.2B.4C.8D.16

分析 根據(jù)$\overrightarrow{a}+\overrightarrow$在$\overrightarrow{a}$上的投影為5即可得出$\frac{(\overrightarrow{a}+\overrightarrow)•\overrightarrow{a}}{|\overrightarrow{a}|}=5$,從而可求出$\overrightarrow{a}•\overrightarrow$的值,進(jìn)而可求出$(\overrightarrow{a}-2\overrightarrow)^{2}$的值,從而便可得出$|\overrightarrow{a}-2\overrightarrow|$的值.

解答 解:根據(jù)條件,
$|\overrightarrow{a}+\overrightarrow|cos<(\overrightarrow{a}+\overrightarrow),\overrightarrow{a}>$
=$|\overrightarrow{a}+\overrightarrow|•\frac{(\overrightarrow{a}+\overrightarrow)•\overrightarrow{a}}{|\overrightarrow{a}+\overrightarrow||\overrightarrow{a}|}$
=$\frac{{\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|}$
=$\frac{16+\overrightarrow{a}•\overrightarrow}{4}$
=5;
∴$\overrightarrow{a}•\overrightarrow=4$;
∴$(\overrightarrow{a}-2\overrightarrow)^{2}={\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow+4{\overrightarrow}^{2}=16-16+16=16$;
∴$|\overrightarrow{a}-2\overrightarrow|=4$.
故選B.

點(diǎn)評 考查投影的概念及計(jì)算公式,向量夾角的余弦公式,以及向量數(shù)量積的運(yùn)算及計(jì)算公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=m+t}\\{y=t}\end{array}}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為2ρ22cos2θ=12.若曲線C的左焦點(diǎn)F在直線l上,且直線l與曲線C交于A,B兩點(diǎn).
(1)求m的值并寫出曲線C的直角坐標(biāo)方程;
(2)求$\frac{{|{FA}|}}{{|{FB}|}}+\frac{{|{FB}|}}{{|{FA}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某三棱錐的三視圖如圖所示,則該三棱錐的體積為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=loga(x-3)+2(a>0,a≠1)的圖象過定點(diǎn)P,且角α的終邊過點(diǎn)P,則的值為sin2α+cos2α( 。
A.$\frac{7}{5}$B.$\frac{6}{5}$C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在正方體ABCD-A1B1C1D1中,點(diǎn)P在線段AD'上運(yùn)動(dòng),則異面直線CP與BA'所成的角θ的取值范圍是$0<θ≤\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)是R上的奇函數(shù),f(x+π)=-f(x),當(dāng)0≤x≤$\frac{π}{2}$時(shí),f(x)=cosx-1,則-2π≤x≤2π時(shí),f(x)的圖象與x軸所圍成圖形的面積為( 。
A.4π-8B.2π-4C.π-2D.3π-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示三棱柱ABC-A1B1C1中,AA1⊥平面ABC,四邊形ABCD為平行四邊形,AD=2CD,AC⊥CD.
(Ⅰ)若AA1=AC,求證:AC1⊥平面A1B1CD;
(Ⅱ)若A1D與BB1所成角的余弦值為$\frac{\sqrt{21}}{7}$,求二面角C-A1D-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l:$\left\{\begin{array}{l}x=2+tcosα\\ y=tsinα\end{array}$(t為參數(shù)),橢圓C:$\left\{\begin{array}{l}x=3cosϕ\\ y=\sqrt{5}sinϕ\end{array}$(φ為參數(shù)),F(xiàn)為橢圓C的右焦點(diǎn).
(1)當(dāng)α=$\frac{π}{4}$時(shí),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求直線l和曲線C的極坐標(biāo)方程;
(2)設(shè)直線l與橢圓C交于A、B兩點(diǎn),求|FA|•|FB|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ln(x+1)+ax,其中a∈R.
(Ⅰ) 當(dāng)a=-1時(shí),求證:f(x)≤0;
(Ⅱ) 對任意x2≥ex1>0,存在x∈(-1,+∞),使$\frac{{f({x_2}-1)-f({x_1}-1)}}{{{x_2}-{x_1}}}>\frac{{a({x_2}-1)-f(x)}}{x_2}$成立,求a的取值范圍.(其中e是自然對數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

同步練習(xí)冊答案