已知某個幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得這個幾何體的表面積是(  )
A、73B、79
C、103D、108
考點(diǎn):由三視圖求面積、體積
專題:計算題,空間位置關(guān)系與距離
分析:幾何體是直四棱柱,根據(jù)三視圖判斷側(cè)棱長和底面四邊形的形狀及相關(guān)幾何量的數(shù)據(jù),把數(shù)據(jù)代入棱柱的表面積公式計算.
解答: 解:由三視圖知:幾何體是直四棱柱,
其中側(cè)棱長為5,底面為直角梯形,且直角梯形的直角腰長為4,兩底邊長為2和5,非直角腰長為5,
∴幾何體的表面積S=2×
2+5
2
×4+(2+5+4+5)×5=28+80=108.
故選:D.
點(diǎn)評:本題考查了由三視圖求幾何體的表面積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對應(yīng)的幾何量是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

到直線x=-1與定點(diǎn)(1,0)距離相等的點(diǎn)的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=|
b
|=2,(
a
+2
b
)•(
a
-
b
)=-2,則
a
b
的夾角為( 。
A、
π
3
B、
3
C、
π
6
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

參數(shù)方程為
x=t-
1
t
y=2
(t為參數(shù))表示的曲線是(  )
A、一條直線B、兩條直線
C、一條射線D、兩條射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x2-x-2)10的展開式中,各項(xiàng)系數(shù)和為(  )
A、0
B、1
C、210
D、-210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=-2+3i在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)平面上矩形ABCD的四個頂點(diǎn)中,A、B、C所對應(yīng)的復(fù)數(shù)分別為2+3i、3+2i、-2-3i,則D點(diǎn)對應(yīng)的復(fù)數(shù)是(  )
A、-2+3iB、-3-2i
C、2-3iD、3-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的以5為周期的奇函數(shù),若f(2)>1,f(2013)=
a+3
a-3
,則a的取值范圍是( 。
A、(-∞,0)
B、(0,3)
C、(0,+∞)
D、(-∞,0)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知回歸直線方程是:
y
=bx+a,其中
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-nx-2
,a=
.
y
-b
.
x
.假設(shè)學(xué)生在高中時數(shù)學(xué)成績和物理成績是線性相關(guān)的,若10個學(xué)生在高一下學(xué)期某次考試中數(shù)學(xué)成績x(總分150分)和物理成績y(總分100分)如下:
X 122 131 126 111 125 136 118 113 115 112
Y 87 94 92 87 90 96 83 84 79 84
(1)試求這次高一數(shù)學(xué)成績和物理成績間的線性回歸方程(系數(shù)精確到0.001)
(2)若小紅這次考試的物理成績是93分,你估計她的數(shù)學(xué)成績是多少分呢?

查看答案和解析>>

同步練習(xí)冊答案