3.設(shè)a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,b=($\frac{1}{3}$)${\;}^{\frac{1}{2}}$,c=ln($\frac{3}{π}$),則a>b>c.

分析 利用冪函數(shù)、指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$$>(\frac{1}{3})^{\frac{1}{3}}$>($\frac{1}{3}$)${\;}^{\frac{1}{2}}$=b>0,
c=ln($\frac{3}{π}$)<0,
則a>b>c.
故答案為:a>b>c.

點評 本題考查了冪函數(shù)、指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=t\\ y=m+t\end{array}\right.$(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為3ρ2cos2θ+ρ2sin2θ=12,且曲線C的下焦點F在直線l上.
(1)若直線l與曲線C交于A,B兩點,求|FA|•|FB|的值;
(2)求曲線C的內(nèi)接矩形的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)點A(0,1),B(2,-1),點C在雙曲線M:$\frac{{x}^{2}}{4}$-y2=1上,則使△ABC的面積為3的點C的個數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若坐標原點到拋物線x=m2y2的準線的距離為2,則m=±$\frac{\sqrt{2}}{4}$;焦點坐標為(2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.等比數(shù)列{an}的各項均為正數(shù),且a5a6+a4a7=20,則lga1+lga2+…+lga10=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{m+3}$═1表示雙曲線,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)a∈R,“1,a2,16為等比數(shù)列“是“a=±2”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知圓C:x2+(y-$\frac{\sqrt{3}}{2}$)2=$\frac{27}{4}$經(jīng)過橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點F1、F2,點N為圓C與橢圓E的一個交點,且直線F1N過圓心C.
(1)求橢圓E的方程;
(2)直線l與橢圓E交于A、B兩點,點M的坐標為(3,0),若$\overrightarrow{MA}$•$\overrightarrow{MB}$=-3,求證:直線l過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=2lnx+8x,則$\underset{lim}{△x→0}$$\frac{f(1+2△x)-f(1)}{△x}$的值為20.

查看答案和解析>>

同步練習(xí)冊答案