【題目】已知函數(shù),下列給出四個結(jié)論:

的最大值為2

在區(qū)間上的單調(diào)增區(qū)間是

③在中,若,則

④將曲線向左平移個單位,得到函數(shù)的圖象,再將曲線

所有點的縱坐標變?yōu)樵瓉淼?/span>2倍(橫坐標不變),得到函數(shù)的導數(shù)的圖象.其中正確的是_______________(填寫所有正確結(jié)論的編號).

【答案】①②③

【解析】

①化函數(shù)為正弦型函數(shù),根據(jù)正弦函數(shù)的圖象與性質(zhì),得出的最大值為2;

②求出時的單調(diào)增區(qū)間是

③求出,利用正弦余弦定理計算

④根據(jù)函數(shù)圖象平移法則得出平移后的函數(shù)解析式,再求出函數(shù)的導數(shù),比較即可.

解:函數(shù)

,

對于①,的最大值為,①正確;

對于②,令,

,

,得,

所以時,的單調(diào)增區(qū)間是,②正確;

③在中,A

所以,,;

,;

所以

,③正確;

對于④,將曲線向左平移個單位,得的圖象,即,

再將曲線所有點的縱坐標變?yōu)樵瓉淼?/span>2倍(橫坐標不變),得的圖象,

又函數(shù)的導數(shù),二者不同,④錯誤.

綜上所述,正確的命題序號為①②③.

故答案為:①②③.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=sin 3x-cos 3x+1的圖象向左平移個單位長度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:

①它的圖象關(guān)于直線x=對稱;

②它的最小正周期為;

③它的圖象關(guān)于點(1)對稱;

④它在[]上單調(diào)遞增.

其中所有正確結(jié)論的編號是(

A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若曲線在點處的切線方程為,求實數(shù)的值;

2)若函數(shù)存在兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若處取得極值,求的值;

2)求在區(qū)間上的最小值;

3)在(1)的條件下,若,求證:當時,恒有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線經(jīng)過點,傾斜角,在極坐標系(與直角坐標系取相同的長度單位,以原點為極點,以軸正半軸為極軸)中,圓的極坐標方程為.

1)寫出直線的參數(shù)方程,并把圓的極坐標方程化為直角坐標方程;

2)設(shè)與圓相交于、兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的焦點的坐標為, 的坐標為且經(jīng)過點, .

1)求橢圓的方程;

(2)設(shè)過的直線與橢圓交于兩不同點,在橢圓上是否存在一點使四邊形為平行四邊形?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點F到左頂點的距離為3.

1)求橢圓C的方程;

2)設(shè)O是坐標原點,過點F的直線與橢圓C交于AB兩點(AB不在x軸上),若,延長AO交橢圓與點G,求四邊形AGBE的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】傳染病的流行必須具備的三個基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個環(huán)節(jié)必須同時存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統(tǒng)計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯(lián)表:

戴口罩

不戴口罩

青年人

50

10

中老年人

20

20

1)能否有的把握認為是否會佩戴口罩出行的行為與年齡有關(guān)?

2)用樣本估計總體,若從該地區(qū)出行不戴口罩的居民中隨機抽取5人,求恰好有2人是青年人的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)、是兩個不同的平面,點、,、,下列命題中正確的是(

A.,,則,

B.,,則,

C.,,,則、,

D.,,則

查看答案和解析>>

同步練習冊答案