【題目】已知命題函數(shù)在上是減函數(shù),命題 ,.
(1)若為假命題,求實(shí)數(shù)的取值范圍;
(2)若“或”為假命題,求實(shí)數(shù)的取值范圍.
【答案】(1);(2)
【解析】分析:第一問利用命題的否定和命題本身是一真一假的,根據(jù)命題q是假命題,得到命題的否定是真命題,結(jié)合二次函數(shù)圖像,得到相應(yīng)的參數(shù)的取值范圍;第二問利用“或”為假命題,則有兩個(gè)命題都是假命題,所以先求命題p為真命題時(shí)參數(shù)的范圍,之后求其補(bǔ)集,得到m的范圍,之后將兩個(gè)命題都假時(shí)參數(shù)的范圍取交集,求得結(jié)果.
詳解:(1)因?yàn)槊} ,
所以: ,,
當(dāng)為假命題時(shí),等價(jià)于為真命題,
即在上恒成立,
故,解得
所以為假命題時(shí),實(shí)數(shù)的取值范圍為.
(2)函數(shù)的對(duì)稱軸方程為,
當(dāng)函數(shù)在上是減函數(shù)時(shí),則有
即為真時(shí),實(shí)數(shù)的取值范圍為
“或”為假命題,故與同時(shí)為假,
則 ,
綜上可知,當(dāng) “或”為假命題時(shí),實(shí)數(shù)的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F在軸正半軸上,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),線段AB的長是8,AB的中點(diǎn)到軸的距離是.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)在拋物線上是否存在不與原點(diǎn)重合的點(diǎn)P,使得過點(diǎn)P的直線交拋物線于另一點(diǎn)Q,滿足,且直線PQ與拋物線在點(diǎn)P處的切線垂直?并請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了安排生產(chǎn)任務(wù),需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試 驗(yàn),得到的數(shù)據(jù)如下:
零件的個(gè)數(shù)x(件) | ||||
加工的時(shí)間y(小時(shí)) |
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出y關(guān)于x的線性回歸方程,并在坐標(biāo)系中畫出回歸直線;
(3)試預(yù)測(cè)生產(chǎn)10個(gè)零件需要多少時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一(1)班的一次數(shù)學(xué)測(cè)試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.
(1)求分?jǐn)?shù)在的頻數(shù)及全班人數(shù);
(2)求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為招聘新員工設(shè)計(jì)了一個(gè)面試方案:應(yīng)聘者從道備選題中一次性隨機(jī)抽取道題,按照題目要求獨(dú)立完成規(guī)定:至少正確完成其中道題的便可通過.已知道備選題中應(yīng)聘者甲有道題能正確完成,道題不能完成;應(yīng)聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響
(1)分別求甲、乙兩人正確完成面試題數(shù)的分布列,并計(jì)算其數(shù)學(xué)期望;
(2)請(qǐng)分析比較甲、乙兩人誰的面試通過的可能性大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)的圖象恒不在軸的上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩支排球隊(duì)進(jìn)行比賽,先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊(duì)獲勝的概率是 ,其余每局比賽甲隊(duì)獲勝的概率都是 .設(shè)各局比賽結(jié)果相互獨(dú)立.
(1)分別求甲隊(duì)3:0,3:1,3:2勝利的概率;
(2)若比賽結(jié)果3:0或3:1,則勝利方得3分,對(duì)方得0分;若比賽結(jié)果為3:2,則勝利方得2分,對(duì)方得1分,求乙隊(duì)得分X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線:.設(shè)圓的半徑為1,圓心在上.
(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;
(2)若圓心上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如下程序框圖,如果輸出i=5,那么在空白矩形框中應(yīng)填入的語句為( )
A.S=2*i﹣2
B.S=2*i﹣1
C.S=2*I
D.S=2*i+4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com