【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),函數(shù)的圖象恒不在軸的上方,求實(shí)數(shù)的取值范圍.

【答案】(1)見解析;(2)

【解析】試題分析:(1)對函數(shù)求導(dǎo),對參數(shù)分類討論,利用導(dǎo)數(shù)的正負(fù)求得函數(shù)的單調(diào)區(qū)間(2)將問題轉(zhuǎn)化為,,,,對參數(shù)分類討論,分別求得函數(shù)的最大值,利用函數(shù)的最大值不小于零,求得參數(shù)的取值范圍.

試題解析:(1) 的定義域?yàn)?/span>

①當(dāng)時(shí),,所以上單調(diào)遞增;

②當(dāng)時(shí),則由,,

所以上單調(diào)遞增,上單調(diào)遞減;

綜上,當(dāng)時(shí), 的單調(diào)遞增區(qū)間為,

當(dāng)時(shí), 的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

(2)由題意知: 恒成立,

00,

,: .

,,

①若上單調(diào)遞增,,

上單調(diào)遞增, ,

從而,不符合題意

②若,當(dāng)時(shí), 上單調(diào)遞增,

從而,

所以上單調(diào)遞增, ,

從而在,不符合題意;

③若上恒成立,

上單調(diào)遞減, ,

從而上單調(diào)遞減, ,

所以恒成立,綜上所述, 的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,是兩個單位向量,與,共面的向量滿足,則的最大值為(  )

A. B. 2C. D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量, ,函數(shù),函數(shù)軸上的截距我,與軸最近的最高點(diǎn)的坐標(biāo)是

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)將函數(shù)的圖象向左平移)個單位,再將圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的2倍,得到函數(shù)的圖象,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某校新、老校區(qū)之間開車單程所需時(shí)間為,只與道路暢通狀況有關(guān),對其容量為的樣本進(jìn)行統(tǒng)計(jì),結(jié)果如圖:

(分鐘)

25

30

35

40

頻數(shù)(次)

20

30

40

10

1)求的分布列與數(shù)學(xué)期望;

2)劉教授駕車從老校區(qū)出發(fā),前往新校區(qū)做一個50分鐘的講座,結(jié)束后立即返回老校區(qū),求劉教授從離開老校區(qū)到返回老校區(qū)共用時(shí)間不超過120分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題函數(shù)上是減函數(shù),命題 ,

(1)若為假命題,求實(shí)數(shù)的取值范圍;

(2)若“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)邊上,,,,

(1)求的值;

(2)若的面積是,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)
(1)求f(x)的單調(diào)區(qū)間及最大值;
(2)討論關(guān)于x的方程|lnx|=f(x)根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校組織學(xué)生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組一次為[20,40),[40,60),[60,80),[80,100).若低于60分的人數(shù)是15人,則該班的學(xué)生人數(shù)是(

A.45
B.50
C.55
D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)( )引直線l與曲線y= 相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△ABO的面積取得最大值時(shí),直線l的斜率等于( )
A.
B.-
C.
D.

查看答案和解析>>

同步練習(xí)冊答案