【題目】過點(diǎn)( )引直線l與曲線y= 相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△ABO的面積取得最大值時(shí),直線l的斜率等于( )
A.
B.-
C.
D.
【答案】B
【解析】解:由y= ,得x2+y2=1(y≥0).
所以曲線y= 表示單位圓在x軸上方的部分(含與x軸的交點(diǎn)),
設(shè)直線l的斜率為k,要保證直線l與曲線有兩個(gè)交點(diǎn),且直線不與x軸重合,
則﹣1<k<0,直線l的方程為y﹣0= ,即 .
則原點(diǎn)O到l的距離d= ,l被半圓截得的半弦長(zhǎng)為 .
則 =
= = .
令 ,則 ,當(dāng) ,即 時(shí),S△ABO有最大值為 .
此時(shí)由 ,解得k=﹣ .
所以答案是B.
【考點(diǎn)精析】通過靈活運(yùn)用直線的斜率,掌握一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是 k = tanα即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)的圖象恒不在軸的上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天課外體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均課外體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
(2)通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“課外體育達(dá)標(biāo)”性別有關(guān)?
參考公式,其中
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,將其物理成績(jī)(均為整數(shù))分成六段,…后畫出如下頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)估計(jì)這次考試的眾數(shù)與中位數(shù)(結(jié)果保留一位小數(shù));
(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如下程序框圖,如果輸出i=5,那么在空白矩形框中應(yīng)填入的語句為( )
A.S=2*i﹣2
B.S=2*i﹣1
C.S=2*I
D.S=2*i+4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程(φ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)直線l的極坐標(biāo)方程是ρ(sinθ+)=3,射線OM:θ=與圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問110名不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
經(jīng)計(jì)算的觀測(cè)值. 參照附表,得到的正確結(jié)論是
附表:
男 | 女 | 總計(jì) | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
A. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
C. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,a為常數(shù)且a>0.
(1)f(x)的圖象關(guān)于直線x= 對(duì)稱;
(2)若x0滿足f(f(x0))=x0 , 但f(x0)≠x0 , 則x0稱為函數(shù)f(x)的二階周期點(diǎn),如果f(x)有兩個(gè)二階周期點(diǎn)x1 , x2 , 試確定a的取值范圍;
(3)對(duì)于(2)中的x1 , x2 , 和a,設(shè)x3為函數(shù)f(f(x))的最大值點(diǎn),A(x1 , f(f(x1))),B(x2 , f(f(x2))),C(x3 , 0),記△ABC的面積為S(a),討論S(a)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于棱長(zhǎng)為的正方體,有如下結(jié)論,其中錯(cuò)誤的是( )
A. 以正方體的頂點(diǎn)為頂點(diǎn)的幾何體可以是每個(gè)面都為直角三角形的四面體;
B. 過點(diǎn)作平面的垂線,垂足為點(diǎn),則三點(diǎn)共線;
C. 過正方體中心的截面圖形不可能是正六邊形;
D. 三棱錐與正方體的體積之比為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com