12.?dāng)?shù)列{an}滿足an=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}<\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}≤{a}_{n}<1}\end{array}\right.$,若a1=$\frac{3}{5}$,則a2016=( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 由題意依次求出a2、a3、a4、a5的值,歸納出數(shù)列{an}的周期,利用周期性求出a2016

解答 解:由題意得,an=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}<\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}≤{a}_{n}<1}\end{array}\right.$,且a1=$\frac{3}{5}$,
則a2=2×$\frac{3}{5}-1$=$\frac{1}{5}$,依次求得a3=$\frac{2}{5}$,a4=$\frac{4}{5}$,a5=$\frac{3}{5}$,…,
所以數(shù)列{an}的周期是4,
則a2016=a4×504=$\frac{4}{5}$,
故選:D.

點評 本題考查了數(shù)列遞推公式,以及數(shù)列的周期性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.?dāng)?shù)列{an}的前n項和Sn滿足Sn=n2an且a1=2,則( 。
A.an=$\frac{4}{n(n+1)}$B.an=$\frac{2}{n+1}$C.an=$\frac{4}{n+1}$D.an=$\frac{2}{{n}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.?dāng)S一枚均勻骰子二次,所得點數(shù)之和為10的概率是( 。
A.$\frac{1}{36}$B.$\frac{1}{12}$C.$\frac{1}{8}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.曲y=-cosx (0≤x≤$\frac{3π}{2}$)與坐標軸所圍圖形的面積是( 。
A.2B.$\frac{5}{2}$C.3D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某人訂了一份報紙,送報人可能在早上6:30~7:30之間把報紙送到他家,他離開家去工作的時間在早上7:00~8:00之間,則他離開家前能得到報紙的概率是(  )
A.$\frac{3}{8}$B.$\frac{1}{2}$C.$\frac{5}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.△ABC的頂點A(3,4),B(0,0),C(c,0)(C>0),又∠A為銳角,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)f(x)=$\frac{{2}^{x}+1}{{2}^{x}-a}$是奇函數(shù),則使f(x)>4成立的x的取值范圍為(0,${log}_{2}\frac{5}{3}$ ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,三棱柱ABC-A1B1C1中,四邊形ABB1A1、ACC1A1都是正方形,AC⊥AB,$\overrightarrow{{A}_{1}D}$=λ$\overrightarrow{{A}_{1}C}$(0<λ<1).
(Ⅰ)求證:AD⊥A1B1;
(Ⅱ)求二面角B-A1C-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|+|x+3|.
(1)解不等式f(x)≥8;
(2)若不等式f(x)<a2-3a的解集不是空集,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案