【題目】設(shè)關(guān)于x的函數(shù)y=2cos2x-2acosx-(2a+1)的最小值為f(a),試確定滿足f(a)=的a的值,并求此時函數(shù)的最大值.
【答案】見解析
【解析】解 令cosx=t,t∈[-1,1],
則y=2t2-2at-(2a+1)
=2(t-)2--2a-1,
關(guān)于t的二次函數(shù)的對稱軸是t=,
當(dāng)<-1,即a<-2時,
函數(shù)y在t∈[-1,1]上是單調(diào)遞增,
所以f(a)=f(-1)=1≠;
當(dāng)>1,即a>2時,
函數(shù)y在t∈[-1,1]上是單調(diào)遞減,
所以f(a)=f(1)=-4a+1=,
解得a=,這與a>2矛盾;
當(dāng)-1≤≤1,即-2≤a≤2時,
f(a)=--2a-1=,
即a2+4a+3=0,解得a=-1或a=-3,
因為-2≤a≤2,所以a=-1.
所以y=2t2+2t+1,t∈[-1,1],所以當(dāng)t=1時,
函數(shù)取得最大值ymax=2+2+1=5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2+ax+b(a,b∈R)的定義域為[-1,1],且|f(x)|的最大值為M.
(1)證明:|1+b|≤M;
(2)證明:M≥.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠今年擬舉行促銷活動,經(jīng)調(diào)查測算,該廠產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x(萬件)與年促銷費(fèi)m(萬元)(m≥0)滿足x=3-.已知今年生產(chǎn)的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將今年該產(chǎn)品的利潤y(萬元)表示為年促銷費(fèi)m(萬元)的函數(shù);
(2)求今年該產(chǎn)品利潤的最大值,此時促銷費(fèi)為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-3ax+e,g(x)=1-lnx,其中e為自然對數(shù)的底數(shù).
(I)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線l:x+2y=0垂直,求實數(shù)a的值;
(II)設(shè)函數(shù)F(x)=-x[g(x)+x-2],若F(x)在區(qū)間(m,m+1)(m∈Z)內(nèi)存在唯一的極值點(diǎn),求m的值;
(III)用max{m,n}表示m,n中的較大者,記函數(shù)h(x)=max{f(x),g(x)}(x>0). 若函數(shù)h(x)在(0,+∞)上恰有2個零點(diǎn),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-3ax-1,a≠0.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有三個不同的交點(diǎn),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在 上的偶函數(shù),當(dāng)時, ).
(1)當(dāng)時,求的解析式;
(2)若,試判斷的上單調(diào)性,并證明你的結(jié)論;
(3)是否存在,使得當(dāng)時, 有最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,A是拋物線上橫坐標(biāo)為4,且位于x軸上方的點(diǎn),A到拋物線準(zhǔn)線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M.
(1)求拋物線的方程;
(2)以M為圓心,MB為半徑作圓M,當(dāng)K(m,0)是x軸上一動點(diǎn)時,討論直線AK與圓M的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面幾種推理是合情推理的是
①由圓的性質(zhì)類比出球的有關(guān)性質(zhì);②由直角三角形、等腰三角形、等邊三角形的內(nèi)角和是180°,歸納出所有三角形的內(nèi)角和都是180°;③教室內(nèi)有一把椅子壞了,則該教室內(nèi)的所有椅子都壞了;④三角形內(nèi)角和是180°,四邊形內(nèi)角和是360°,五邊形內(nèi)角和是540°,由此得出凸多邊形的內(nèi)角和是(n-2)·180°___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,側(cè)棱底面, , 是的中點(diǎn).
(1)求二面角的平面角的余弦值;
(2)在被上是否存在點(diǎn),使平面?證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com