7.如果命題P:點(diǎn)(1,-1)在曲線y=-1+lnx上;命題q:$\int_0^{\frac{π}{2}}{sinxdx}$計(jì)算結(jié)果是-1,那么命題p∧q的真假性為假 (寫真或假)

分析 分別判斷p,q的真假,從而判斷復(fù)合命題的真假即可.

解答 解:將(1,-1)代入y=-1+lnx,得:-1=-1+ln1=-1,
故命題p是真命題;
∵$\int_0^{\frac{π}{2}}{sinxdx}$=(-cosx)${|}_{0}^{\frac{π}{2}}$=1,
∴命題q的假命題,
故p∧q是假命題,
故答案為:假.

點(diǎn)評(píng) 本題考查了定積分的計(jì)算,考查復(fù)合命題的判斷,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)A={x|-2<x<2},B={x|x2-2x-3=0},則A∪B={x|-2<x<2}∪{3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx-ax(a∈R),
(Ⅰ)若a=-2,求曲線y=f(x)在x=1處的切線方程;
(Ⅱ)若f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)f(x)<0在(0,+∞)上恒成立時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)z=$\frac{1}{1+i}$(i是虛數(shù)單位)的共軛復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于第( 。┫笙蓿
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)無窮數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{1}{2}$n2+n(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求滿足S${\;}_{{k}^{2}}$=(Sk2的正整數(shù)k;
(3)求出所有的無窮數(shù)列{an},使得對(duì)于一切正整數(shù)k都有S${\;}_{{k}^{2}}$=(Sk2成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.用秦九韶算法求多項(xiàng)式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,當(dāng)x=3時(shí)的值,并將結(jié)果化為8進(jìn)制數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z=1-i,則$\frac{{z}^{2}-2z}{z-1}$的模是( 。
A.2iB.2C.-2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.直線y=2x-5在y軸上的截距是-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x3-3ax+2(a∈R).
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案