【題目】已知長方形ABCD中,AB=1,AD=。現(xiàn)將長方形沿對角線BD折起,使AC=a,得到一個四面體ABCD,如圖所示.

(1)試問:在折疊的過程中,異面直線AB與CD,AD與BC能否垂直?若能垂直,求出相應的a值;若不垂直,請說明理由.

(2)當四面體ABCD的體積最大時,求二面角ACDB的余弦值.

【答案】見解析

【解析】

解:(1)若AB⊥CD,因為AB⊥AD,AD∩CD=D,

所以AB⊥平面ACD,所以AB⊥AC.

即AB2+a2=BC2,即12+a2=()2,所以a=1。

若AD⊥BC,因為AD⊥AB,

所以AD⊥平面ABC,所以AD⊥AC.

即AD2+a2=CD2,即()2+a2=12,

所以a2=-1,無解.

故AD⊥BC不成立.

(2)要使四面體ABCD的體積最大,因為△BCD的面積為定值,

所以只需三棱錐ABCD的高最大即可,此時平面ABD⊥平面BCD,

過點A作AO⊥BD于點O,

則AO⊥平面BCD,

以O為坐標原點建立空間直角坐標系Oxyz(如圖),

則易知A,C(,,0),D

顯然,平面BCD的一個法向量為。

設平面ACD的法向量為n=(x,y,z).

因為,

所以令y=,得n=(1,,2).

故二面角ACDB的余弦值為|cos〈,n〉|=。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

以坐標原點為極點,以軸的非負半軸為極軸建立極坐標系,已知曲線的參數(shù)方程為為參數(shù),),直線的參數(shù)方程為為參數(shù)).

(1)點在曲線上,且曲線在點處的切線與直線垂直,求點的極坐標;

(2)設直線與曲線有兩個不同的交點,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對同一類的,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2S△ABC·.

(1)求角B的大。

(2)若b=2,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求曲線處的切線方程;

(2)設函數(shù),求函數(shù)的單調(diào)區(qū)間;

(3)若,在上存在一點,使得成立,

的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以該直角坐標系的原點為極點, 軸的正半軸為極軸的極坐標系下,曲線的方程為.

1)求曲線的普通方程和曲線的直角坐標方程;

2)設曲線和曲線的交點為、,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓=1(a>b>0)的左焦點為F,右頂點為A,拋物線y2 (a+c)x與橢圓交于B,C兩點,若四邊形ABFC是菱形,則橢圓的離心率等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設是否存在極值,若存在,請求出極值;若不存在,請說明

理由;

(3)當時.證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)時取得極小值.

1)求實數(shù)的值;

2)是否存在區(qū)間,使得在該區(qū)間上的值域為?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案