【題目】已知函數(shù).
(1)當時,求曲線在處的切線方程;
(2)設函數(shù),求函數(shù)的單調區(qū)間;
(3)若,在上存在一點,使得成立,
求的取值范圍.
【答案】(1);(2)詳見解析;(3)或.
【解析】試題分析:(1)中求的是在x=1的切線方程,所以直接出函數(shù)在x=1的導數(shù),和切點即可解決。(2)求單調性區(qū)間,先注意定義域,再求導數(shù)等于0的根,一般對于含參的問題,我們先看是否能因式分解。(3)存在成立,先變形為,從而構造函數(shù)在上的最小值.同時注意第(2)問己求對本問的應用。
試題解析:
(1)當時, ,切點,
所以,所以,
所以曲線在點處的切線方程為: ,即.
(2),定義域為,
,
①當,即時,令,因為,所以.
令,因為,所以.
②當,即,令恒成立,
綜上,當時, 唉上單調遞減,在上單調遞增,
當時, 在上單調遞增.
(3)由題意可知,在上存在一點,使得成立,
即在上存在一點,使得,
即函數(shù)在上的最小值.
由第(2)問,
①當,即時, 在上單調遞減,
所以,所以,因為,所以;
②當,即時, 在上單調遞增,
所以,所以;
③當,即時, ,
因為,所以,所以,
此時不存在使得成立.
科目:高中數(shù)學 來源: 題型:
【題目】某市統(tǒng)計局就2015年畢業(yè)大學生的月收入情況調查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖所示,每個分組包括左端點,不包括右端點,如第一組表示.
(1)求畢業(yè)大學生月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析大學生的收入與所學專業(yè)、性別等方面的關系,必須按月收入再從這10000人中按分層抽樣方法抽出100人作進一步分析,則月收入在的這段應抽取多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,圓,動圓與圓外切并與圓內切,圓心的軌跡為曲線.
(1)求曲線的方程;
(2)若雙曲線的右焦點即為曲線的右頂點,直線為的一條漸近線.
①.求雙曲線C的方程;
②.過點的直線,交雙曲線于兩點,交軸于點(點與的頂點不重合),當,且時,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)是奇函數(shù),且滿足f(x)=f(x+3),f(-2)=-3.若數(shù)列{an}中,a1=-1,且前n項和Sn滿足=2×+1,則f(a5)+f(a6)=________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知長方形ABCD中,AB=1,AD=,F(xiàn)將長方形沿對角線BD折起,使AC=a,得到一個四面體ABCD,如圖所示.
(1)試問:在折疊的過程中,異面直線AB與CD,AD與BC能否垂直?若能垂直,求出相應的a值;若不垂直,請說明理由.
(2)當四面體ABCD的體積最大時,求二面角ACDB的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形的兩條對角線相交于,現(xiàn)用五種顏色(其中一種為紅色)對圖中四個三角形進行染色,且每個三角形用一種顏色圖染.
(1)若必須使用紅色,求四個三角形中有且只有一組相鄰三角形同色的染色方法的種數(shù);
(2)若不使用紅色,求四個三角形中所有相鄰三角形都不同色的染色方法的種數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某數(shù)學教師對所任教的兩個班級各抽取20名學生進行測試,分數(shù)分布如表:
(1)若成績120分以上(含120分)為優(yōu)秀,求從乙班參加測試的90分以上(含90分)的同學中,隨機任取2名同學,恰有1人為優(yōu)秀的概率;
(2)根據(jù)以上數(shù)據(jù)完成下面的列聯(lián)表:在犯錯概率小于的前提下,你是否有足夠的把握認為學生的數(shù)學成績是否優(yōu)秀與班級有關系?
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x-1|+|x-2a|.
(1)當a=1時,求f(x)≤3的解集;
(2)當x∈[1,2]時,f(x)≤3恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com