數(shù)學公式,f1(x)=f(x),fn(x)=fn-1[f(x)](n≥2,n∈N*),則f(1)+f(2)+…f(2011)+f1(1)+f2(1)+f3(1)…f2011(1)=


  1. A.
    2009
  2. B.
    2010
  3. C.
    2011
  4. D.
    1
C
分析:觀察所給的前四項的結(jié)構(gòu)特點,先觀察分子,只有一項組成,并且沒有變化,在觀察分母,有兩部分組成,是一個一次函數(shù),根據(jù)一次函數(shù)的一次項系數(shù)與常數(shù)項的變化特點,得到f(n)+fn(1)=+=1,從而得出結(jié)果.
解答:∵函數(shù)f(x)=,觀察:
f1(x)=f(x)=
f2(x)=f(f1(x))=,
f3(x)=f(f2(x))=
f4(x)=f(f3(x))=,

所給的函數(shù)式的分子不變都是x,
而分母是由兩部分的和組成,
第一部分的系數(shù)分別是x,2x,3x,4x…nx,
第二部分的數(shù)1
∴fn(x)=f(fn-1(x))=
f(n)+fn(1)=+=1,
則f(1)+f(2)+…+f(2011)+f1(1)+f2(1)+f3(1)…+f2011(1)
=2011
故選C.
點評:本題考查歸納推理,實際上本題考查的重點是給出一個數(shù)列的前幾項寫出數(shù)列的通項公式,本題是一個綜合題目,知識點結(jié)合的比較巧妙.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

幾位同學在研究函數(shù)f(x)=
x
1+|x|
(x∈R)時,給出了下面幾個結(jié)論:
①函數(shù)f(x)的值域為(-1,1);②若x1≠x2,則一定有f(x1)≠f(x2);③f(x)在(0,+∞)是增函數(shù);④若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=
x
1+n|x|
對任意n∈N*恒成立,
上述結(jié)論中正確的個數(shù)有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一次研究性課堂上,老師給出函數(shù)f(x)=
x
1+|x|
(x∈R)
,甲、乙、丙三位同學在研究此函數(shù)時分別給出命題:
甲:函數(shù)f(x)的值域為(-1,1);
乙:若x1≠x2則一定有f(x1)≠f(x2);
丙:若規(guī)定f1(x)=f(x),fn(x)=f(f1(x)),則fn(x)=
x
1+nx
,對任意的n∈N*恒成立
你認為上述三個命題中正確的個數(shù)有( 。
A、3個B、2個C、1個D、0個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一次研究性課堂上,老師給出了函數(shù)f(x)=
x
1+|x|
(x∈R)
,三位同學甲、乙、丙在研究此函數(shù)時分別給出命題:
①函數(shù)f(x)的值域為(-1,1);
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn(x)=f(fn-1(x)),則fn(x)=
x
1+n|x|
對任意n∈N*恒成立.
你認為上述三個命題中正確的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

研究函數(shù)f(x)=
x
1+|x|
(x∈R)
的性質(zhì),分別給出下面結(jié)論( 。
①若x1=-x2,則一定有f(x1)=-f(x2);
②函數(shù)f(x)在定義域上是減函數(shù);
③函數(shù)f(x)的值域為(-1,1);
④若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=
x
1+n|x|
對任意n∈N*恒成立,
其中正確的結(jié)論有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學在研究函數(shù)f(x)=
x
1+|x|
(x∈R)時,給出了下面幾個結(jié)論:
①函數(shù)f(x)的值域為(-1,1);②若f(x1)=f(x2),則恒有x1=x2;③f(x)在(-∞,0)上是減函數(shù);
④若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=
x
1+n|x|
對任意n∈N*恒成立,
上述結(jié)論中所有正確的結(jié)論是( 。

查看答案和解析>>

同步練習冊答案