14.比較85(9)、210(6)、1000(4)、111111(2)這四個(gè)數(shù)的大。

分析 將四個(gè)數(shù)都轉(zhuǎn)化為十進(jìn)制的數(shù),進(jìn)而可以比較其大。

解答 解:85(9)=8×9+5=77,
210(6)=2×62+1×6=78,
1000(4)=1×43=64,
111111(2)=1×26-1=63,
故210(6)>85(9)>1000(4)>111111(2)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是不同進(jìn)制數(shù)之間的轉(zhuǎn)換,解答的關(guān)鍵是熟練掌握不同進(jìn)制之間數(shù)的轉(zhuǎn)化規(guī)則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列函數(shù),在區(qū)間$(\frac{π}{2},π)$上是增函數(shù)的是(  )
A.y=cosxB.y=|sinx|C.y=cos2xD.y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=$\frac{a}{x}$-x,a∈R.
(Ⅰ)若a=-1,求f(x)在區(qū)間[$\frac{1}{2}$,3]上的最大值;
(Ⅱ)設(shè)b≠0,求證:當(dāng)a=-1時(shí),過(guò)點(diǎn)P(b,-b)有且只有一條直線與曲線y=f(x)相切;
(Ⅲ)若對(duì)任意的x∈[$\frac{1}{2}$,2],均有f(x)|x-1|≤1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{x}^{2},x≤0}\end{array}\right.$,若f(4)=2f(a),則實(shí)數(shù)a的值為(  )
A.-1或2B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若非零不共線向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow$|,則下列結(jié)論正確的個(gè)數(shù)是|.(  )
①向量$\overrightarrow{a}$,$\overrightarrow$的夾角恒為銳角  ②2|$\overrightarrow$|2>$\overrightarrow{a}$•$\overrightarrow$  ③|2$\overrightarrow$|>|$\overrightarrow{a}$-2$\overrightarrow$|④|2$\overrightarrow{a}$|>|2$\overrightarrow{a}$-$\overrightarrow$|.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某商店購(gòu)進(jìn)12件同品牌的衣服,其中10件是正品,其余2件是次品,從中無(wú)放回地任取2件,則取出的2件衣服中,至少有1件是次品的概率是(  )
A.$\frac{1}{3}$B.$\frac{5}{33}$C.$\frac{10}{33}$D.$\frac{7}{22}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2x-1,集合A={x|1≤x≤2}.
(1)記函數(shù)f(x)在A上的值域?yàn)镃,若函數(shù)G(x)=x2+2x+t,x∈[0,1]的值域?yàn)锽,且C∪B=B,求實(shí)數(shù)t的取值范圍;
(2)若?x∈A,[f(log2x)]2+2af(log2x)+a>-5恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.己知命題P:?x∈(2,3),x2+5>ax是假命題,則實(shí)數(shù)a的取值范圍是(  )
A.[$2\sqrt{5}$,+∞)B.[$\frac{9}{2}$,+∞)C.[$\frac{14}{3}$,+∞)D.(-∞,$2\sqrt{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若先將函數(shù)y=$\sqrt{3}$sin(x-$\frac{π}{6}$)+cos(x-$\frac{π}{6}$)圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍,再將所得圖象向左平移$\frac{π}{6}$個(gè)單位,所得函數(shù)圖象的一條對(duì)稱軸的方程是( 。
A.x=$\frac{π}{6}$B.x=$\frac{π}{3}$C.x=$\frac{π}{12}$D.x=$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案