過橢圓的左頂點(diǎn)作斜率為2的直線,與橢圓的另一個(gè)交點(diǎn)為,與軸的交點(diǎn)為,已知.
(1)求橢圓的離心率;
(2)設(shè)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn),若軸上存在一定點(diǎn),使得,求橢圓的方程.

(1);(2).

解析試題分析:(I)根據(jù),設(shè)直線方程為,
確定的坐標(biāo),由確定得到,
再根據(jù)點(diǎn)在橢圓上,求得進(jìn)一步即得所求;
(2)由可設(shè),
得到橢圓的方程為,

根據(jù)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn)P
得到,整理得.
確定的坐標(biāo)
, 
軸上存在一定點(diǎn),使得,那么
可得,由恒成立,故,得解.
試題解析:(1)∵ ,設(shè)直線方程為,
,則,∴,                2分
         3分
,∴=,
整理得        4分
點(diǎn)在橢圓上,∴,∴          5分
,∴                6分
(2)∵可設(shè),
∴橢圓的方程為                           7分
          8分
∵動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn)P
,即
整理得                         9分
設(shè)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓經(jīng)過點(diǎn),離心率,直線的方程為.

(1)求橢圓的方程;
(2)是經(jīng)過右焦點(diǎn)的任一弦(不經(jīng)過點(diǎn)),設(shè)直線與直線相交于點(diǎn),記的斜率分別為.問:是否存在常數(shù),使得?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線E:y2=4x的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為A.點(diǎn)C在拋物線E上,以C為圓心,|CO|為半徑作圓,設(shè)圓C與準(zhǔn)線l交于不同的兩點(diǎn)M,N.

(1)若點(diǎn)C的縱坐標(biāo)為2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圓C的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

我們把離心率為e=的雙曲線(a>0,b>0)稱為黃金雙曲線.如圖,是雙曲線的實(shí)軸頂點(diǎn),是虛軸的頂點(diǎn),是左右焦點(diǎn),在雙曲線上且過右焦點(diǎn),并且軸,給出以下幾個(gè)說法:

①雙曲線x2-=1是黃金雙曲線;
②若b2=ac,則該雙曲線是黃金雙曲線;
③如圖,若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;
④如圖,若∠MON=90°,則該雙曲線是黃金雙曲線.
其中正確的是(  )

A.①②④B.①②③C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線C頂點(diǎn)為原點(diǎn),其焦點(diǎn)F(0,c)(c>0)到直線l:x-y-2=0的距離為,設(shè)P為直線l上的點(diǎn),過點(diǎn)P作拋物線C的兩條切線PA,PB,其中A,B為切點(diǎn).
(1)求拋物線C的方程;
(2)當(dāng)點(diǎn)P(x0,y0)為直線l上的定點(diǎn)時(shí),求直線AB的方程;
(3)當(dāng)點(diǎn)P在直線l上移動(dòng)時(shí),求|AF|·|BF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為,且||=2,
點(diǎn)(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過的直線與橢圓C相交于A,B兩點(diǎn),若AB的面積為,求以為圓心且與直線相切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知E(2,2)是拋物線C:y2=2px上一點(diǎn),經(jīng)過點(diǎn)(2,0)的直線l與拋物線C交于A,B兩點(diǎn)(不同于點(diǎn)E),直線EA,EB分別交直線x=-2于點(diǎn)M,N.
(1)求拋物線方程及其焦點(diǎn)坐標(biāo);
(2)已知O為原點(diǎn),求證:∠MON為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L(zhǎng),設(shè)L上的點(diǎn)與點(diǎn)M(x,y)的距離的最小值為m,點(diǎn)F(0,1)與點(diǎn)M(x,y)的距離為n.
(1)求圓C的圓心軌跡L的方程.
(2)求滿足條件m=n的點(diǎn)M的軌跡Q的方程.
(3)在(2)的條件下,試探究軌跡Q上是否存在點(diǎn)B(x1,y1),使得過點(diǎn)B的切線與兩坐標(biāo)軸圍成的三角形的面積等于.若存在,請(qǐng)求出點(diǎn)B的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)訄A過定點(diǎn)(1,0),且與直線相切.
(1)求動(dòng)圓圓心的軌跡方程;
(2)設(shè)是軌跡上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線的傾斜角分別為,①當(dāng)時(shí),求證直線恒過一定點(diǎn)
②若為定值,直線是否仍恒過一定點(diǎn),若存在,試求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案