分析 (1)利用三角函數(shù)恒等變換的應(yīng)用化簡函數(shù)解析式可得f(x)=2sin(2x-$\frac{π}{6}$),利用正弦函數(shù)的性質(zhì)可求值域.
(2)由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答 解:(1)∵$f(x)=2\sqrt{3}sinxcosx+{sin^2}x-{cos^2}x$
=$\sqrt{3}$sin2x-cos2x
=2sin(2x-$\frac{π}{6}$),
∴由sin(2x-$\frac{π}{6}$)∈[-1,1],可得:f(x)∈[-2,2].
(2)把y=sinx的圖象向右平移$\frac{π}{6}$個(gè)單位,可得函數(shù)y=sin(x-$\frac{π}{6}$)的圖象;
再把所得圖象上的點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍,縱坐標(biāo)不變,可得函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象;
再所得圖象上的點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?倍,橫坐標(biāo)不變,可得函數(shù)y=2sin(2x-$\frac{π}{6}$)的圖象;
點(diǎn)評 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{3}$,$\frac{2}{3}$) | B. | [$\frac{1}{3}$,$\frac{2}{3}$) | C. | ($\frac{1}{2}$,$\frac{2}{3}$) | D. | [$\frac{1}{2}$,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 如果a1是5的倍數(shù),那么數(shù)列{an}與數(shù)列{2n}必有相同的項(xiàng) | |
B. | 如果a1不是5的倍數(shù),那么數(shù)列{an}與數(shù)列{2n}必沒有相同的項(xiàng) | |
C. | 如果a1不是5的倍數(shù),那么數(shù)列{an}與數(shù)列{2n}只有有限個(gè)相同的項(xiàng) | |
D. | 如果a1不是5的倍數(shù),那么數(shù)列{an}與數(shù)列{2n}有無窮多個(gè)相同的項(xiàng). |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com