8.對于給定的正整數(shù)數(shù)列{an},滿足an+1=an+bn,其中bn是an的末位數(shù)字,下列關(guān)于數(shù)列{an}的說法正確的是( 。
A.如果a1是5的倍數(shù),那么數(shù)列{an}與數(shù)列{2n}必有相同的項(xiàng)
B.如果a1不是5的倍數(shù),那么數(shù)列{an}與數(shù)列{2n}必沒有相同的項(xiàng)
C.如果a1不是5的倍數(shù),那么數(shù)列{an}與數(shù)列{2n}只有有限個相同的項(xiàng)
D.如果a1不是5的倍數(shù),那么數(shù)列{an}與數(shù)列{2n}有無窮多個相同的項(xiàng).

分析 分類討論:當(dāng)a1是5的倍數(shù),則數(shù)列{an}的末位數(shù)字是5或0,數(shù)列{2n}的末位數(shù)字只能是2,4,6,8,不存在相同的項(xiàng),判斷A不正確;當(dāng)a1不是5的倍數(shù)時,則這個數(shù)的末位數(shù)字只能是2,4,6,8,數(shù)列{an}的末位數(shù)字可以是2,4,6,8,數(shù)列{2n}的末位數(shù)字有且只有2,4,6,8,故它們必有相同的項(xiàng),且有無窮多個相同的項(xiàng),由此判斷B,C不正確,D正確.

解答 解:如果a1是5的倍數(shù),則數(shù)列{an}的末位數(shù)字是5或0,數(shù)列{2n}的末位數(shù)字只能是2,4,6,8,不存在相同的項(xiàng),因此A不正確;
當(dāng)a1不是5的倍數(shù)時,這個數(shù)加上它的末位數(shù)字,一直加下去,則這個數(shù)的末位數(shù)字只能是2,4,6,8,數(shù)列{an}的末位數(shù)字可以是
2,4,6,8,數(shù)列{2n}的末位數(shù)字有且只有2,4,6,8,故它們必有相同的項(xiàng),且有無窮多個相同的項(xiàng),因此B,C不正確,D正確.
∴關(guān)于數(shù)列{an}的說法正確的是:D.
故選:D.

點(diǎn)評 本題考查命題真假判斷與應(yīng)用,考查了數(shù)列遞推式的運(yùn)用,求解此類題的關(guān)鍵是要對命題涉及的知識有很好的理解與掌握,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=2\sqrt{3}sinxcosx+{sin^2}x-{cos^2}x$,
(1)求f(x)的值域;
(2)說明怎樣由y=sinx的圖象得到f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-$\frac{a}{x}-1$.
(1)若曲線y=f(x)存在斜率為-1的切線,求實(shí)數(shù)a的取值范圍;
(2)求f(x)的單調(diào)區(qū)間;
(3)設(shè)函數(shù)g(x)=$\frac{x+a}{lnx}$,求證:當(dāng)-1<a<0時,g(x)在(1,+∞)上存在極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(b>a>0)的右焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),若存在直線l過點(diǎn)F交雙曲線C的右支于A,B兩點(diǎn),使$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,則雙曲線離心率的取值范圍是$\sqrt{3}$>e≥$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線l:y=x-1,雙曲線c1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,拋物線c2:y2=2x,直線l與c1相交于A,B兩點(diǎn),與c2交于C,D兩點(diǎn),若線段AB與CD的中點(diǎn)相同,則雙曲線c1的離心率為( 。
A.$\frac{\sqrt{6}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{15}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x>0\\ x+y≤7\\ x+2≤2y\end{array}\right.$,則$\frac{y}{x}$的最小值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且bsin2C=csinB.
(1)求角C;
(2)若$sin(B-\frac{π}{3})=\frac{3}{5}$,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在等差數(shù)列{an}中,a2=4,前4項(xiàng)之和為18.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=n•{2^{{a_n}-2}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在棱長為1的正方體ABCD-A1B1C1D1中,點(diǎn)P是正方體棱上的一點(diǎn)(不包括棱的端點(diǎn)),對確定的常數(shù)m,若滿足|PB|+|PD1|=m的點(diǎn)P的個數(shù)為n,則n的最大值是12.

查看答案和解析>>

同步練習(xí)冊答案