分析 (1)由數(shù)列的性質(zhì)對其經(jīng)行變形整理出可以判斷數(shù)列為等差數(shù)列的形式即可,求出Sn,再根據(jù)an=Sn-Sn-1,即可求出數(shù)列的通項(xiàng)公式,
(2)先構(gòu)造函數(shù)f(n)并判斷其單調(diào)性,然后再由函數(shù)的單調(diào)性解決函數(shù)恒成立的,求出參數(shù)k的取值范圍.
解答 解:(1)∵當(dāng)n≥2時,an=2anSn-2Sn2,
∴an=$\frac{2{S}_{n}^{2}}{2{S}_{n}-1}$,n≥2,
∴(Sn-Sn-1)(2Sn-1)=2Sn2,
∴Sn-Sn-1=2SnSn-1,
∴$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$2,n≥2,
∴數(shù)列{$\frac{1}{{S}_{n}}$}是以$\frac{1}{{S}_{1}}$=1為首項(xiàng),以2為公差的等差數(shù)列,
∴$\frac{1}{{S}_{n}}$=1+2(n-1)=2n-1,
∴Sn=$\frac{1}{2n-1}$,
∴n≥2時,an=Sn-Sn-1=$\frac{1}{2n-1}$-$\frac{1}{2n-3}$=-$\frac{2}{(2n-1)(2n-3)}$,
∵a1=S1=1,
∴an=$\left\{\begin{array}{l}{1.n=1}\\{-\frac{2}{(2n-1)(2n-3)},n≥2}\end{array}\right.$,
(2)設(shè)f(n)=$\frac{(1+{S}_{1})(1+{S}_{2})…(1+{S}_{n})}{\sqrt{2n+1}}$,
則$\frac{f(n+1)}{f(n)}$=$\frac{2n+2}{\sqrt{2n+1}•\sqrt{2n+3}}$=$\frac{\sqrt{4{n}^{2}+8n+4}}{\sqrt{4{n}^{2}+8n+3}}$>1,
∴f(n)在n∈N*上遞增,
要使f(n)≥k恒成立,只需要f(n)min≥k,
∵f(n)min=f(1)=$\frac{2\sqrt{3}}{3}$,
∴0<k≤$\frac{2\sqrt{3}}{3}$
點(diǎn)評 本題考查了等差數(shù)列通項(xiàng)與前n項(xiàng)和的關(guān)系以及述略與不等式相結(jié)合的有關(guān)問題,第二問中轉(zhuǎn)化為函數(shù)來判斷單調(diào)性都需要較高的知識組合能力以及較高的觀察能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
成績優(yōu)秀 | 成績一般 | 合計(jì) | |
對照班 | 20 | 90 | 110 |
翻轉(zhuǎn)班 | 40 | 70 | 110 |
合計(jì) | 60 | 160 | 220 |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3+2\sqrt{3}}{10}$ | B. | $\frac{3-2\sqrt{2}}{10}$ | C. | $\frac{3+4\sqrt{3}}{10}$ | D. | $\frac{3-4\sqrt{3}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{6}$=1 | C. | $\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1 | D. | $\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{5}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1+$\frac{\sqrt{3}}{2}$)米 | B. | 2米 | C. | (1+$\sqrt{3}$)米 | D. | (2+$\sqrt{3}$)米 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com