【題目】如圖所示,使電路接通,開(kāi)關(guān)不同的開(kāi)閉方式有( )
A. 11種B. 20種
C. 21種D. 12種
【答案】C
【解析】
試題設(shè)5個(gè)開(kāi)關(guān)依次為1、2、3、4、5,由電路知識(shí)分析可得電路接通,則開(kāi)關(guān)1、2與3、4、5中至少有1個(gè)接通,依次分析開(kāi)關(guān)1、2與3、4、5中至少有1個(gè)接通的情況數(shù)目,由分步計(jì)數(shù)原理,計(jì)算可得答案.
解:根據(jù)題意,設(shè)5個(gè)開(kāi)關(guān)依次為1、2、3、4、5,若電路接通,則開(kāi)關(guān)1、2與3、4、5中至少有1個(gè)接通,對(duì)于開(kāi)關(guān)1、2,共有2×2=4種情況,其中全部斷開(kāi)的有1種情況,則其至少有1個(gè)接通的有4-1=3種情況,對(duì)于開(kāi)關(guān)3、4、5,共有2×2×2=8種情況,其中全部斷開(kāi)的有1種情況,則其至少有1個(gè)接通的8-1=7種情況,則電路接通的情況有3×7=21種;故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正三棱柱 ABC﹣A1B1C1 中,AB 1 ,若二面角 C AB C1 的大小為 60°,則點(diǎn) C 到平面 ABC1 的距離為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,側(cè)面底面,是邊長(zhǎng)為2的正三角形,已知點(diǎn)滿足.
(1)求二面角的大。
(2)求異面直線與的距離;
(3)直線上是否存在點(diǎn),使平面?若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為常數(shù),函數(shù)
(1)過(guò)坐標(biāo)原點(diǎn)作曲線的切線,設(shè)切點(diǎn)為,求;
(2)令,若函數(shù)在區(qū)間上是單調(diào)減函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)若,求曲線的直角坐標(biāo)方程以及直線的極坐標(biāo)方程;
(2)設(shè)點(diǎn),曲線與直線交于兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)點(diǎn),過(guò)A作兩條不同直線,其中直線關(guān)于直線對(duì)稱.
(1)求拋物線E的方程及其準(zhǔn)線方程;
(2)設(shè)直線分別交拋物線E于兩點(diǎn)(均不與A重合),若以線段為直徑的圓與拋物線E的準(zhǔn)線相切,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.命題“”的否定是“”
B.命題“已知,若則或”是真命題
C.命題“若則函數(shù)只有一個(gè)零點(diǎn)”的逆命題為真命題
D.“在上恒成立”在上恒成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙兩人進(jìn)行射擊比賽,各射擊局,每局射擊次,射擊中目標(biāo)得分,未命中目標(biāo)得分,兩人局的得分情況如下:
甲 | ||||
乙 |
(1)若從甲的局比賽中,隨機(jī)選取局,求這局的得分恰好相等的概率;
(2)從甲,乙兩人的局比賽中隨機(jī)各選取局,記這局的得分和為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com