【題目】下列說法正確的是( )
A.命題“”的否定是“”
B.命題“已知,若則或”是真命題
C.命題“若則函數(shù)只有一個零點”的逆命題為真命題
D.“在上恒成立”在上恒成立
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大慶實驗中學(xué)在高二年級舉辦線上數(shù)學(xué)知識競賽,在已報名的400名學(xué)生中,根據(jù)文理學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學(xué)生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…,[80,90],并整理得到如下頻率分布直方圖:
(1)估算一下本次參加考試的同學(xué)成績的中位數(shù)和眾數(shù);
(2)已知樣本中分數(shù)小于40的學(xué)生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(3)已知樣本中有一半理科生的分數(shù)不小于70,且樣本中分數(shù)不小于70的文理科生人數(shù)相等.試估計總體中理科生和文科生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是等比數(shù)列,有下列四個命題:①是等比數(shù)列;②是等比數(shù)列;③是等比數(shù)列;④是等比數(shù)列,其中正確命題的序號是( )
A.②④B.③④C.②③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
(1)求函數(shù)在上的最小值;
(2)函數(shù),若在其定義域內(nèi)有兩個不同的極值點,求a的取值范圍;
(3)記的兩個極值點分別為,且.已知,若不等式恒成立,求的取值范圍.注:為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知i為虛數(shù)單位,下列說法中正確的是( )
A.若復(fù)數(shù)z滿足,則復(fù)數(shù)z對應(yīng)的點在以為圓心,為半徑的圓上
B.若復(fù)數(shù)z滿足,則復(fù)數(shù)
C.復(fù)數(shù)的模實質(zhì)上就是復(fù)平面內(nèi)復(fù)數(shù)對應(yīng)的點到原點的距離,也就是復(fù)數(shù)對應(yīng)的向量的模
D.復(fù)數(shù)對應(yīng)的向量為,復(fù)數(shù)對應(yīng)的向量為,若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)有極值,且導(dǎo)函數(shù)的極值點是的零點.(極值點是指函數(shù)取極值時對應(yīng)的自變量的值)
(1)求關(guān)于的函數(shù)關(guān)系式,并寫出定義域;
(2)若,這兩個函數(shù)的所有極值之和不小于,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知斜率為1的直線與橢圓交于,兩點,且線段的中點為,橢圓的上頂點為.
(1)求橢圓的離心率;
(2)設(shè)直線與橢圓交于兩點,若直線與的斜率之和為2,證明:過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com