【題目】設(shè)方程有兩個(gè)不等的負(fù)根,方程無(wú)實(shí)根,若“”為真,“”為假,求實(shí)數(shù)的取值范圍.
【答案】(1,2]∪[3,+∞)
【解析】試題分析:本題考查邏輯聯(lián)接詞,由“或”為真,“且”為假可知,“真假”或“假真”,先求命題為真命題時(shí)實(shí)數(shù)的取值范圍,從而得到為假命題時(shí)的取值范圍,同樣先求命題為真命題時(shí)的取值范圍,再求為假命題時(shí)的取值范圍,然后求“真假”時(shí)的范圍,求“假真”時(shí)的范圍,最后取兩部分范圍的并集.
試題解析:若方程有兩個(gè)不等的負(fù)根,則,解得.
即………………2分
若方程無(wú)實(shí)根,
則,
解得:,即.…………4分
因“”為真,所以至少有一為真,又“”為假,所以至少有一為假,
因此,兩命題應(yīng)一真一假,即為真,為假或為假,為真.……6分
∴或.
解得:或.…………………………10分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求f(x)的最小正周期及單調(diào)減區(qū)間;
(2)若α∈(0,π),且f=,求tan的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}前n項(xiàng)和為Sn,已知,且S1,S2,S4成等比數(shù)列,求{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從參加某次高中英語(yǔ)競(jìng)賽的學(xué)生中抽出100名,將其成績(jī)整理后,繪制頻率分布直方圖(如圖所示).其中樣本數(shù)據(jù)分組區(qū)間為: , , , , , .
(Ⅰ)試求圖中的值,并計(jì)算區(qū)間上的樣本數(shù)據(jù)的頻率和頻數(shù);
(Ⅱ)試估計(jì)這次英語(yǔ)競(jìng)賽成績(jī)的眾數(shù)、中位數(shù)及平均成績(jī)(結(jié)果精確到).
注:同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形中, , , , , 、分別在、上, ,現(xiàn)將四邊形沿折起,使平面平面.
()若,是否存在折疊后的線段上存在一點(diǎn),且,使得平面?若存在,求出的值;若不存在,說(shuō)明理由.
()求三棱錐的體積的最大值,并求此時(shí)點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱臺(tái)ABC﹣A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求證:BC1⊥平面AA1C1C
(2)點(diǎn)D是B1C1的中點(diǎn),求二面角A1﹣BD﹣B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓上異于其頂點(diǎn)的任意一點(diǎn)作圓的兩條切線,切點(diǎn)分別為(不在坐標(biāo)軸上),若直線在軸, 軸上的截距分別為,證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)的產(chǎn)品的直徑均位于區(qū)間內(nèi)(單位: ).若生產(chǎn)一件產(chǎn)品的直徑位于區(qū)間內(nèi)該廠可獲利分別為10,30,20,10(單位:元),現(xiàn)從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取200件測(cè)量它們的直徑,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計(jì)該廠生產(chǎn)一件產(chǎn)品的平均利潤(rùn);
(2)現(xiàn)用分層抽樣法從直徑位于區(qū)間內(nèi)的產(chǎn)品中隨機(jī)抽取一個(gè)容量為5的樣本,從樣本中隨機(jī)抽取兩件產(chǎn)品進(jìn)行檢測(cè),求兩件產(chǎn)品中至多有一件產(chǎn)品的直徑位于區(qū)間內(nèi)的槪率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com