已知拋物線的頂點為原點,它的焦點在x軸上,且該拋物線過Q(-2,4)點,求它的標準方程.
考點:拋物線的標準方程
專題:圓錐曲線的定義、性質與方程
分析:設出拋物線方程,利用經過點(2,2),求出拋物線中的參數(shù),即可得到拋物線方程.
解答: 解:因為拋物線的頂點在原點,焦點在x軸上,且經過點(-2,4),
設標準方程為y2=2px,
因為點(-2,4)在拋物線上,所以42=-4p,
所以p=-4,
所以所求拋物線方程為:y2=-8x.
故答案為:y2=-8x.
點評:本題考查拋物線的標準方程的求法,注意標準方程的形式,是易錯題,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,若S5>S6,則2a3-3a4的值( 。
A、小于0B、大于0
C、等于0D、無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
ex-a
x
,g(x)=alnx+a.
(1)當a=0時,求f(x)在(1,f(x))處的切線方程.
(2)若x>1時,恒有f(x)≥g(x)成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)證明CD⊥AE;
(2)證明PD⊥平面ABE;
(3)求二面角A-PD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=x3+3ax+3x+1
(1)當a=-
2
時,求函數(shù)f(x)的單調區(qū)間;
(2)若x∈[2,+∞)時,f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,BA=BD=
2
,PA=PD=
5
,AD=2,BD=
3
.E、F分別是棱AD,PC的中點.
(1)證明:EF∥平面PAB;
(2)求二面角P-AD-B的大。
(3)證明BE⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ABC-A1B1C1,A1A⊥底面ABC為正三角形,D為AC中點.
(1)求證:直線AB1∥平面BC1D;
(2)求證:平面BC1D⊥平面ACC1A1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示是一個幾何體的直觀圖、正視圖、俯視圖和側視圖(尺寸如圖所示);
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)求證平面PBC⊥平面PABE;
(Ⅲ)若G為BC上的動點,求證:AE⊥PG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的公差為d,前n項和為Tn,設Cn=an2-an+12
(1)判斷數(shù)列{Cn}是否為等差數(shù)列并說明理由;
(2)若a1+a3+a5+…a25=130,a2+a4+a6+…+a26=143-13k(k是常數(shù)),試寫出數(shù)列{Cn}的通項公式;
(3)在(2)的條件下,若數(shù)列{Cn}的前n項和Sn,問是否存在實數(shù)k,使得Sn當且僅當n=12時取得最大值?若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案