13.設(shè){an}是各項均為正數(shù)的等比數(shù)列,Sn為其前n項和,若S4=10S2,則此數(shù)列的公比q的值為3.

分析 由S4=10S2,可得a1(1+q+q2+q3)=10a1(1+q),又an>0,解出即可得出.

解答 解:∵S4=10S2,∴a1(1+q+q2+q3)=10a1(1+q),
即a1(1+q)(3+q)(q-3)=0,
又an>0,
∴q=3.
故答案為:3.

點評 本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四棱錐P-ABCD中,已知PA⊥面ABCD,E為PD的中點,AD∥BC,AB⊥AD,AD=2AB=2BC.求證:
(1)CE∥面PAB;
(2)DC⊥面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.?dāng)?shù)列 1,$\frac{3}{{2}^{2}}$,$\frac{4}{{2}^{3}}$,$\frac{5}{{2}^{4}}$,…,$\frac{n+1}{{2}^{n}}$ 的前n項和等于( 。
A.Sn=3-$\frac{n+1}{{2}^{n}}$-$\frac{1}{{2}^{n-1}}$B.Sn=3-$\frac{n+1}{{2}^{n}}$-1-$\frac{1}{{2}^{n-2}}$
C.Sn=3-$\frac{n+1}{{2}^{n}}$-$\frac{1}{{2}^{n-2}}$D.Sn=3-n2n--$\frac{1}{{2}^{n-2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.由正整數(shù)組成的一組數(shù)據(jù)x1,x2,x3,x4,其平均數(shù)和中位數(shù)都是2,且標(biāo)準(zhǔn)差等于1,則這組數(shù)據(jù)的立方和為( 。
A.70B.60C.50D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=cos2x-6cosx+6的最小值是( 。
A.1B.-1C.-11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.△ABC中,∠B=60°,b=2$\sqrt{3}$,則△ABC周長的最大值為( 。
A.2B.2$\sqrt{3}$C.3$\sqrt{3}$D.6$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.小波以游戲的方式?jīng)Q定是去打球、唱歌還是去下棋.游戲規(guī)則為以O(shè)為起點,再從A1,A2,A3,A4,A5,A6(如圖)這6個點中任取兩點分別為終點得到兩個向量,記住這兩個向量的數(shù)量積為X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.
(1)寫出數(shù)量積X的所有可能取值
(2)分別求小波去下棋的概率和不去唱歌的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=Asin(2x+φ),x∈R,A>0,φ∈(0,$\frac{π}{2}$),且f($\frac{π}{12}$)=f($\frac{π}{4}$)=$\sqrt{3}$.
(Ⅰ)求A,φ的值;
(Ⅱ)若f(x0)=$\frac{6}{5}$,x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求sin(2x0-$\frac{π}{12}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:?x0∈R,2x≤3x;命題q:“?x∈R,ex>0”的否定是“?x0∈R,ex>0”,則下列是真命題的是( 。
A.p∧qB.(¬p)∧qC.p∨qD.(¬p)∨q

查看答案和解析>>

同步練習(xí)冊答案