8.函數(shù)y=cos2x-6cosx+6的最小值是(  )
A.1B.-1C.-11D.13

分析 利用二倍角公式化簡函數(shù)的表達式,通過配方法結(jié)合函數(shù)的有界性,求出函數(shù)的最小值.

解答 解:函數(shù)y=cos2x-6cosx+6=2cos2x-6cosx+5=2(cosx-$\frac{3}{2}$)2+$\frac{1}{2}$
∵-1≤cosx≤1
∴當cosx=1時ymin=1,
故選:A

點評 本題是基礎(chǔ)題,考查三角函數(shù)的基本運算,二次函數(shù)的最值的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)f(x)=x+sinx,(x∈R),則下列說法錯誤的是( 。
A.f(x)是奇函數(shù)B.f(x)在R上存在最值C.f(x)的值域為RD.f(x)不是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知全集U=R,集合A={x|0≤x<4},B={x|y=lg(4-x2)},則A∩B=( 。
A.(0,4)B.{0,2}C.(0,2]D.[0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=x(lnx-ax)有兩個極值點,則實數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,+∞)C.(-∞,-$\frac{1}{2}$)D.(-∞,-$\frac{1}{2}$)∪(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓C的圓心在坐標原點,且與直線l1:x-y-2$\sqrt{2}$=0相切.
(I)過點G(1,3)作直線與圓C相交,相交弦長為2$\sqrt{3}$,求此直線的方程;
(II)若與直線l1垂直的直線l不過點R(1,-1),且與圓C交于不同的兩點P,Q,若∠PRQ為鈍角,求直線l的縱截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè){an}是各項均為正數(shù)的等比數(shù)列,Sn為其前n項和,若S4=10S2,則此數(shù)列的公比q的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如表
商店名稱ABCDE
銷售額x(千萬元)35679
利潤額y(百萬元)23345
(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)性;
(2)用最小二乘法計算利潤額y對銷售額x的回歸直線方程;
(3)當銷售額為8(千萬元)時,估計利潤額的大。
(附:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(sinα,cosα),$\overrightarrow$=(sinα,sinα),若$\overrightarrow{a}$⊥$\overrightarrow$,則sin(2α-$\frac{π}{4}$)等于( 。
A.-$\frac{\sqrt{2}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某校從高一年級學(xué)生中隨機抽取部分學(xué)生,將他們的模塊測試成績分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示提頻率分布直方圖.已知高一年級共有學(xué)生1200名,據(jù)此估計,該模塊測試成績中位數(shù)為( 。
A.69B.70C.7D.72

查看答案和解析>>

同步練習(xí)冊答案