1.設(shè)f(x)=x2+bx+c(b、c∈R).
(1)設(shè)m∈R,函數(shù)g(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x+m,x≥0}\\{f(x),x<0}\end{array}\right.$為奇函數(shù),求b+c的值;
(2)若f(x)=x沒有實數(shù)根,問:f(f(x))=x是否有實數(shù)根?并證明你的結(jié)論;
(3)若對一切θ∈R,有f($\frac{2}{sinθ}$)≥0,且f(2+$\frac{1}{1+ta{n}^{2}θ}$的最大值為1,求b、c滿足的條件.

分析 (1)由奇函數(shù)的定義,以及分段函數(shù)的解法得到a,b,c.
(2)由復合函數(shù)化簡,得到恒成立問題.
(3)考查恒成立以及最值問題,由單調(diào)性得到結(jié)論.

解答 (1)∵g(x)為奇函數(shù)
∴g(0)=0.∴m=0
∴當x≥0時,g(x)=-x2+2x
當x<0時,f(-x)=-x2-2x,
∴f(x)=x2+2x
∴b=2,c=0
∴b+c=2
(2)f(f(x))=x,則f(x)=x
∵f(x)=x無實根
∴f(f(x))=x無實根
(3)∵sinθ∈[-1,1],
∴$\frac{2}{sinθ}∈(-∞,-2]∪[2,+∞)$,
∵$\left\{\begin{array}{l}{f(-2)≥0}\\{f(2)≥0}\end{array}\right.$
∴$\left\{\begin{array}{l}{4-2b+c≥0}\\{4+2b+c≥0}\end{array}\right.$ 
∴c≥-4
又f(x)在(-∞,-2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,
∴f(3)=1
9+3b+c=1
∴b,c滿足c≥-4且3b+c=-8

點評 本題考查奇函數(shù)的定義,分段函數(shù),復合函數(shù)化簡,恒成立以及最值問題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對應值如表:
x-$\frac{π}{6}$$\frac{π}{3}$$\frac{5π}{6}$$\frac{4π}{3}$$\frac{11π}{6}$$\frac{7π}{3}$$\frac{17π}{6}$
y-1131-113
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個解析式;
(2)根據(jù)(1)的結(jié)果:
( i)當x∈[0,$\frac{π}{3}$]時,方程f(3x)=m恰有兩個不同的解,求實數(shù)m的取值范圍;
( ii)若α,β是銳角三角形的兩個內(nèi)角,試比較f(sinα)與f(cosβ)的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)f(x)=x2+2tx-1的單調(diào)遞增區(qū)間是(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.一個幾何體的三視圖(單位:m)如圖所示,則此幾何體的表面積為12π+12m2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若函數(shù)y1=2sinx1(x1∈[0,2π]),函數(shù)y2=x2+$\sqrt{3}$,則(x1-x22+(y1-y22 的最小值為(  )
A.$\frac{(5π-6\sqrt{3})^{2}}{18}$B.$\frac{(5π+6\sqrt{3})^{2}}{18}$C.$\frac{{π}^{2}}{18}$D.$\frac{{π}^{2}}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.平面a截半徑為R的球O得到一個半徑為$\frac{{\sqrt{3}R}}{2}$的截面圓O′,三棱錐S-ABC內(nèi)接于球O,且△ABC是圓O′的內(nèi)接正三角形,若O′S=R,則三棱錐S-ABC與球O的體積之比為$\frac{{9\sqrt{3}}}{256π}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知實數(shù)a,b滿足4a+b=ab,(a≥b>0),則a+b的最小值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為120°,且|$\overrightarrow a$|=4,|$\overrightarrow b$|=2,
(1)求$\overrightarrow a$•$\overrightarrow b$;
(2)求|3$\overrightarrow a$+5$\overrightarrow b$|;
(3)若向量$\overrightarrow a$+k$\overrightarrow b$與5$\overrightarrow a$+2$\overrightarrow b$垂直,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列命題中正確命題的個數(shù)是( 。
(1)設(shè)隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=$\frac{1}{2}$-p;
(2)在區(qū)間[0,π]上隨機取一個數(shù),則事件“tanxcosx≥$\frac{1}{2}$”發(fā)生的概率為$\frac{5}{6}$;
(3)兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)r越接近1;
(4)f(x)=|sinx|+|cosx|,則f(x)的最小正周期是π.
A.0個B.1個C.2個D.3個

查看答案和解析>>

同步練習冊答案