11.下列命題中正確命題的個數(shù)是(  )
(1)設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=$\frac{1}{2}$-p;
(2)在區(qū)間[0,π]上隨機(jī)取一個數(shù),則事件“tanxcosx≥$\frac{1}{2}$”發(fā)生的概率為$\frac{5}{6}$;
(3)兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r越接近1;
(4)f(x)=|sinx|+|cosx|,則f(x)的最小正周期是π.
A.0個B.1個C.2個D.3個

分析 對4個選項分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:(1)由圖象的對稱性可得,若P(ξ>1)=p,則P(ξ<-1)=p,∴P(-1<ξ<1)=1-2p,∴P(-1<ξ<0)=$\frac{1}{2}$-p,正確;
(2)tanx•cosx≥$\frac{1}{2}$,即sinx≥$\frac{1}{2}$且cosx≠0,∵x∈[0,π],∴x∈[$\frac{π}{6}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{5π}{6}$]
∴在區(qū)間[0,π]內(nèi),滿足tanx•cosx≥$\frac{1}{2}$發(fā)生的概率為P=$\frac{\frac{5π}{6}-\frac{π}{6}}{π-0}$=$\frac{2}{3}$,不正確;
(3)兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值就越接近于1,故錯誤;
(4)f(x)=|sinx|+|cosx|,則f(x)的最小正周期是$\frac{π}{2}$,不正確.
故選:B.

點評 本題考查命題真假的判定,涉及知識點較多,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)f(x)=x2+bx+c(b、c∈R).
(1)設(shè)m∈R,函數(shù)g(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x+m,x≥0}\\{f(x),x<0}\end{array}\right.$為奇函數(shù),求b+c的值;
(2)若f(x)=x沒有實數(shù)根,問:f(f(x))=x是否有實數(shù)根?并證明你的結(jié)論;
(3)若對一切θ∈R,有f($\frac{2}{sinθ}$)≥0,且f(2+$\frac{1}{1+ta{n}^{2}θ}$的最大值為1,求b、c滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)f(x)=2aex-x2+3(a為常數(shù),e是自然對數(shù)的底)恰有兩個極值點,則實數(shù)a的取值范圍是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知等比數(shù)列{an}的前n項和為Sn,公比q=2,S10=1023,則S2+S4+S6+S8+S10的值為1359.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知x∈R,命題“若x2>0,則x>0”的逆命題、否命題和逆否命題中,正確命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.變量x,y滿足約束條件$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ x+2y≥1\end{array}\right.$,則z=42x-y的最大值為(  )
A.$\root{3}{4}$B.2C.4D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y-4≤0}\\{x-3y≥0}\\{y≥0}\end{array}\right.$,則z=x-2y的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一彈性小球從100m高處自由落下,每次著地后又跳回原來高度的$\frac{2}{3}$再落下,設(shè)它第n次著地時,共經(jīng)過了Sn,則當(dāng)n≥2時,有(  )
A.Sn的最小值為100B.Sn的最大值為400C.Sn<500D.Sn≤500

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.將5名學(xué)生分配到3個不同的社區(qū)參加社會實踐活動,每個社區(qū)至少分配一名學(xué)生的方案種數(shù)為150.

查看答案和解析>>

同步練習(xí)冊答案