如圖,正方體ABCD-A1B1C1D1中,E是棱DD1的中點,F(xiàn)是側(cè)面CDD1C1上的動點,且B1F∥平面A1BE,則B1F與平面CDD1C1所成角的正弦值構(gòu)成的集合是 ( 。
A、{2}
B、
2
5
5
C、{t|
2
2
≤t≤
6
3
}
D、{t|
2
5
5
≤t≤
2
3
2
}
考點:直線與平面所成的角
專題:計算題,空間角
分析:設(shè)G,H,I分別為CD、CC1、C1D1邊上的中點,根據(jù)面面平行的判定定理,可得平面A1BGE∥平面B1HI,結(jié)合已知中B1F∥面A1BE,可得F落在線段HI上,∠B1FC1即為B1F與平面CDD1C1 所成角,求出該角正弦的最大值與最小值,即可得到答案.
解答: 解:設(shè)G,H,I分別為CD、CC1、C1D1邊上的中點,則ABEG四點共面,且平面A1BGE∥平面B1HI
又∵B1F∥面A1BE,∴F落在線段HI上,
設(shè)HI的中點為J,
則當(dāng)F與J重合時,B1F與平面CDD1C1 所成角的正弦值有最大值
2
2
3
,
當(dāng)F與H或I重合時,B1F與平面CDD1C1 所成角的正弦值有最小值
2
5
5
,
故B1F與平面CDD1C1所成角的正切值構(gòu)成的集合是{t|
2
5
5
≤t≤
2
2
3
},
故選:D.
點評:本題考查的知識點是直線與平面所成的角,其中分析出F落在線段HI上,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點M(2,1)作直線l交于雙曲線x2-
y2
2
=1于A,B兩點,且M為AB的中點,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一個三位正整數(shù)的中間一個數(shù)字比另兩個數(shù)字小,如305,414,879等,則稱這個三位數(shù)為凹數(shù),那么所有凹數(shù)的個數(shù)是( 。
A、240B、285
C、729D、920

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某電視臺連續(xù)播放6個廣告,其中4個不同的商業(yè)廣告和2個不同的奧運宣傳廣告,要求最后播放的必須是奧運宣傳廣告,且2個奧運宣傳廣告不能連續(xù)播放,則不同的播放方式有( 。
A、720種B、48種
C、96種D、192種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點A是拋物線y2=4x上一點,點B(1.0),點M是線段AB的中點,若|AB|=3,則M 到直線x=-1的距離為( 。
A、5
B、
3
2
C、2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定下列四個命題:
①如果一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;
②如果一條直線和兩個平行平面中的一個平面垂直,那么這條直線也和另一個平面垂直;
③如果一條直線和兩個互相垂直的平面中的一個平面垂直,那么這條直線一定平行于另一個
平面;
④如果兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.
其中為真命題的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖A、B是單位圓O上的點,且B在第二象限.C是圓與x軸正半軸的交點,A點的坐標(biāo)為(
3
5
,
4
5
)
,△AOB為正三角形,則(Ⅰ)sin∠COA=
 
;(Ⅱ)cos∠COB
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列關(guān)于x的不等式:
(1)x2-(a+
1
a
)x+1<0(a≠0);
(2)
ax-1
x-a
<0(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知定圓F:(x-1)2+y2=1(F為圓心),定直線l:x=-2,作與圓F內(nèi)切且和直線l相切的動圓P,
(1)試求動圓圓心P的軌跡E的方程.
(2)設(shè)過定圓心F的直線m自下而上依次交軌跡E及定園F于點A、B、C、D,
①是否存在直線m,使得|AD|=2|BC|成立?若存在,請求出這條直線的方程;若不存在,請說明理由.
②當(dāng)直線m繞點F轉(zhuǎn)動時,|AB|•|CD|的值是否為定值?若是,請求出這個定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案