【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),離心率等于,該橢圓的一個(gè)長(zhǎng)軸端點(diǎn)恰好是拋物線的焦點(diǎn).

1)求橢圓的方程;

2)已知直線與橢圓的兩個(gè)交點(diǎn)記為,其中點(diǎn)在第一象限,點(diǎn)、是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).當(dāng)運(yùn)動(dòng)時(shí),滿足,試問直線的斜率是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.

【答案】(1)

(2)為定值,定值.

【解析】

1)由題意可求出拋物線的焦點(diǎn)坐標(biāo),即為的值,再根據(jù)離心率等于,及、的關(guān)系即可求出

2)由題意,即直線與直線斜率存在且斜率之和為0,可設(shè)的斜率為,表示出直線與直線的方程,分別聯(lián)立直線方程與橢圓方程,即可用含的式子表示,兩點(diǎn)的坐標(biāo)特征,即可求出直線的斜率。

1)因?yàn)閽佄锞焦點(diǎn)為,所以,

,∴

,所以.

所以橢圓的方程為.

2)由題意,當(dāng)時(shí),知斜率存在且斜率之和為0.

設(shè)直線的斜率為,則直線的斜率為,記,

直線與橢圓的兩個(gè)交點(diǎn)、,

設(shè)的方程為,聯(lián)立

,

由已知知恒成立,所以,

同理可得.

所以,,

所以.

所以的斜率為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年開始,國家逐步推行全新的高考制度,新高考不再分文理科。某省采用模式,其中語文、數(shù)學(xué)、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(63),每科目滿分100.為了應(yīng)對(duì)新高考,某學(xué)校從高一年級(jí)1000名學(xué)生(其中男生550人,女生450人)中,根據(jù)性別分層,采用分層抽樣的方法從中抽取100名學(xué)生進(jìn)行調(diào)查.

1)學(xué)校計(jì)劃在高一上學(xué)期開設(shè)選修中的“物理”和“歷史”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)抽取到的100名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),如下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表.請(qǐng)求出,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

選擇“物理”

選擇“歷史”

總計(jì)

男生

10

女生

25

總計(jì)

2)在抽取到的女生中按(1)中的選課情況進(jìn)行分層抽樣,從中抽出9名女生,再從這9名女生中隨機(jī)抽取4人,設(shè)這4人中選擇“歷史”的人數(shù)為,求的分布列及數(shù)學(xué)期望.

參考公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,分別為內(nèi)角所對(duì)的邊,且滿足.

(Ⅰ)的大小;

(Ⅱ)現(xiàn)給出三個(gè)條件:;.

試從中選出兩個(gè)可以確定的條件,寫出你的選擇并以此為依據(jù)求的面積 (只需寫出一個(gè)選定方案即可,選多種方案以第一種方案記分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線L,曲線C的參數(shù)方程為為參數(shù))

求直線L和曲線C的普通方程;

在曲線C上求一點(diǎn)Q,使得Q到直線L的距離最小,并求出這個(gè)最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是( )

A.命題“若,則”的逆否命題為:“若,則

B.”是“”的充分而不必要條件

C.為假命題,則、均為假命題

D.命題“存在,使得”,則非“任意,均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓經(jīng)過為坐標(biāo)原點(diǎn),線段的中點(diǎn)在圓上.

(1)求的方程;

(2)直線不過曲線的右焦點(diǎn),與交于兩點(diǎn),且與圓相切,切點(diǎn)在第一象限, 的周長(zhǎng)是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為點(diǎn),左、右頂點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為,橢圓上任意一點(diǎn)(不與重合)與連線的斜率乘積均為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)如圖,過點(diǎn)的直線與橢圓交于兩點(diǎn),過點(diǎn)的直線與橢圓交于兩點(diǎn),且,試問:四邊形可否為菱形?并請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過兩點(diǎn),且圓心在直線上.

(1)求圓的方程;

(2)設(shè)圓軸相交于、兩點(diǎn),點(diǎn)為圓上不同于、的任意一點(diǎn),直線軸于、點(diǎn).當(dāng)點(diǎn)變化時(shí),以為直徑的圓是否經(jīng)過圓內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與定點(diǎn),動(dòng)圓點(diǎn)且與圓相切

(1)求動(dòng)圓圓心的軌跡的方程;

(2)若過定點(diǎn)的直線交軌跡于不同的兩點(diǎn)、,求弦長(zhǎng)的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案