A. | [-$\frac{2}{e}$,1] | B. | [$\frac{7}{3{e}^{2}}$,1] | C. | [0,$\frac{2}{e}$] | D. | [$\frac{7}{3{e}^{2}}$,$\frac{2}{e}$] |
分析 設(shè)g(x)=ex(3x-1),h(x)=ax-a,對g(x)求導(dǎo),將問題轉(zhuǎn)化為存在2個整數(shù)x0使得g(x0)在直線h(x)=ax-a的下方,求導(dǎo)數(shù)可得函數(shù)的極值,解g(-1)-h(-1)<0,g(-2)-h(-2)>0,求得a的取值范圍.
解答 解:設(shè)g(x)=ex(3x-1),h(x)=ax-a,
則g′(x)=ex(3x+2),
∴x∈(-∞,-$\frac{2}{3}$),g′(x)<0,g(x)單調(diào)遞減,
x∈(-$\frac{2}{3}$,+∞),g′(x)>0,g(x)單調(diào)遞增,
∴x=-$\frac{2}{3}$,取最小值-3${e}^{-\frac{2}{3}}$,
∴g(0)=-1<-a=h(0),
g(1)-h(1)=2e>0,
直線h(x)=ax-a恒過定點(1,0)且斜率為a,
∴g(-1)-h(-1)=-4e-1+2a≤0,
∴a≤$\frac{2}{e}$,
g(-2)=-$\frac{7}{{e}^{2}}$,h(-2)=-3a,
由g(-2)-h(-2)≥0,解得:a≥$\frac{7}{{3e}^{2}}$,
故選:D.
點評 本題考查求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和極值問題,涉及轉(zhuǎn)化的思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | -$\frac{1}{5}$或$\frac{1}{5}$ | C. | -$\frac{3}{4}$或$\frac{3}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\sqrt{7}$ | C. | $\sqrt{19}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 由于f(x)=xcosx滿足f(-x)=-f(x)對?x∈R成立,推斷f(x)=xcosx為奇函數(shù) | |
B. | 由a1=1,an=3n-1,求出s1,s2,s3,猜出數(shù)列{an}的前n項和的表達式 | |
C. | 由圓x2+y2=1的面積S=πr2,推斷:橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的面積S=πab | |
D. | 由平面三角形的性質(zhì)推測空間四面體的性質(zhì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${1.5^{\frac{5}{4}}}$>${1.7^{\frac{5}{4}}}$ | B. | ${(\frac{4}{3})^{\frac{3}{4}}}$>${(\frac{4}{3})^{\frac{4}{3}}}$ | C. | ${(\sqrt{2})^{-\frac{1}{2}}}$>${(\sqrt{3})^{-\frac{1}{2}}}$ | D. | ${(0.7)^{\frac{3}{2}}}$>${(0.7)^{\frac{1}{2}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{9\sqrt{3}}}{4}$ | B. | $\frac{{9\sqrt{3}}}{2}$ | C. | $\frac{9}{2}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com