1.設(shè)函數(shù)f(x)=ex(3x-1)-ax+a,其中a<1,若僅有兩個整數(shù)x0,使得f(x0)<0,則a的取值范圍是( 。
A.[-$\frac{2}{e}$,1]B.[$\frac{7}{3{e}^{2}}$,1]C.[0,$\frac{2}{e}$]D.[$\frac{7}{3{e}^{2}}$,$\frac{2}{e}$]

分析 設(shè)g(x)=ex(3x-1),h(x)=ax-a,對g(x)求導(dǎo),將問題轉(zhuǎn)化為存在2個整數(shù)x0使得g(x0)在直線h(x)=ax-a的下方,求導(dǎo)數(shù)可得函數(shù)的極值,解g(-1)-h(-1)<0,g(-2)-h(-2)>0,求得a的取值范圍.

解答 解:設(shè)g(x)=ex(3x-1),h(x)=ax-a,
則g′(x)=ex(3x+2),
∴x∈(-∞,-$\frac{2}{3}$),g′(x)<0,g(x)單調(diào)遞減,
x∈(-$\frac{2}{3}$,+∞),g′(x)>0,g(x)單調(diào)遞增,
∴x=-$\frac{2}{3}$,取最小值-3${e}^{-\frac{2}{3}}$,
∴g(0)=-1<-a=h(0),
g(1)-h(1)=2e>0,
直線h(x)=ax-a恒過定點(1,0)且斜率為a,
∴g(-1)-h(-1)=-4e-1+2a≤0,
∴a≤$\frac{2}{e}$,
g(-2)=-$\frac{7}{{e}^{2}}$,h(-2)=-3a,
由g(-2)-h(-2)≥0,解得:a≥$\frac{7}{{3e}^{2}}$,
故選:D.

點評 本題考查求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和極值問題,涉及轉(zhuǎn)化的思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知角α的終邊在直線y=$\frac{4}{3}$x上,則cosα-sinα的值等于( 。
A.$\frac{4}{3}$B.-$\frac{1}{5}$或$\frac{1}{5}$C.-$\frac{3}{4}$或$\frac{3}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,AB=2,AC=3,A=60°,則BC=( 。
A.$\sqrt{6}$B.$\sqrt{7}$C.$\sqrt{19}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列推理是歸納推理的是( 。
A.由于f(x)=xcosx滿足f(-x)=-f(x)對?x∈R成立,推斷f(x)=xcosx為奇函數(shù)
B.由a1=1,an=3n-1,求出s1,s2,s3,猜出數(shù)列{an}的前n項和的表達式
C.由圓x2+y2=1的面積S=πr2,推斷:橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的面積S=πab
D.由平面三角形的性質(zhì)推測空間四面體的性質(zhì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x+1|,x<1}\\{{x}^{2}-4x+2,x≥1}\end{array}\right.$,則函數(shù)g(x)=f(x)-21-|x|的零點個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某校選擇高一年級三個班進行為期二年的教學(xué)改革試驗,為此需要為這三個班各購買某種設(shè)備1臺,經(jīng)市場調(diào)研,該種設(shè)備有甲乙兩型產(chǎn)品,甲型價格是3000元/臺,乙型價格是2000元/臺,這兩型產(chǎn)品使用壽命都至少是一年,甲型產(chǎn)品使用壽命低于2年的概率是$\frac{1}{4}$,乙型產(chǎn)品使用壽命低于2年的概率是$\frac{2}{3}$,若某班設(shè)備在試驗期內(nèi)使用壽命到期,則需要再購買乙型產(chǎn)品更換.
(1)若該校購買甲型2臺,乙型1臺,求試驗期內(nèi)購買該種設(shè)備總費用恰好是10000元的概率;
(2)該校有購買該種設(shè)備的兩種方案,A方案:購買甲型3臺;B方案:購買甲型2臺乙型1臺.若根據(jù)2年試驗期內(nèi)購買該設(shè)備總費用的期望值決定選擇哪種方案,你認為該校應(yīng)該選擇哪種方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.己知函數(shù)f(x)=alnx-$\frac{1}{2}$x2 (a∈R).
(Ⅰ)求a=l時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)討論f(x)在定義域上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列不等關(guān)系式正確的是(  )
A.${1.5^{\frac{5}{4}}}$>${1.7^{\frac{5}{4}}}$B.${(\frac{4}{3})^{\frac{3}{4}}}$>${(\frac{4}{3})^{\frac{4}{3}}}$C.${(\sqrt{2})^{-\frac{1}{2}}}$>${(\sqrt{3})^{-\frac{1}{2}}}$D.${(0.7)^{\frac{3}{2}}}$>${(0.7)^{\frac{1}{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知三棱錐O-ABC的頂點A,B,C都在半徑為3的球面上,O是球心,∠AOB=150°,則三棱錐O-ABC體積的最大值為(  )
A.$\frac{{9\sqrt{3}}}{4}$B.$\frac{{9\sqrt{3}}}{2}$C.$\frac{9}{2}$D.$\frac{9}{4}$

查看答案和解析>>

同步練習(xí)冊答案