【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).

,求函數(shù)的極值;

若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍。

【答案】(I)函數(shù)有極小值,無極大值. (II).

【解析】

(I)先求導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),最后根據(jù)導(dǎo)數(shù)符號確定極值,(II)先求導(dǎo)數(shù),再根據(jù)導(dǎo)函數(shù)零點(diǎn)分類討論,最后根據(jù)單調(diào)性確定最小值,進(jìn)而確定實(shí)數(shù)的取值范圍.

由題意得,,則,

,解得,令,解得

則函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

故當(dāng)時(shí),函數(shù)有極小值,無極大值.

(II)令,

.

,則

易得上單調(diào)遞增,

上單調(diào)遞增,.

當(dāng),即時(shí),上恒成立,

上單調(diào)遞增,,滿足題意;

當(dāng)時(shí),,當(dāng)時(shí),,

上單調(diào)遞增,

,使得,當(dāng)時(shí),,

函數(shù)上單調(diào)遞減,,不滿足題意.

綜上所述,實(shí)數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關(guān)鍵詞的次數(shù)為基礎(chǔ)所得到的統(tǒng)計(jì)指標(biāo).“搜索指數(shù)”越大,表示網(wǎng)民對該關(guān)鍵詞的搜索次數(shù)越多,對該關(guān)鍵詞相關(guān)的信息關(guān)注度也越高.下圖是2017年9月到2018年2月這半年中,某個(gè)關(guān)鍵詞的搜索指數(shù)變化的走勢圖.

根據(jù)該走勢圖,下列結(jié)論正確的是( )

A. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度呈周期性變化

B. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度不斷減弱

C. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差

D. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解小學(xué)生的體能情況,抽取了某小學(xué)同年級部分學(xué)生進(jìn)行跳繩測試,將所得的數(shù)據(jù)整理后畫出頻率分布直方圖,已知圖中從左到右的前三個(gè)小組的頻率分別是0.1,0.30.4第一小組的頻數(shù)是5.

1)求第四小組的頻率和該組參加這次測試的學(xué)生人數(shù);

2)在這次測試中,學(xué)生跳繩次數(shù)的中位效落在第幾小組內(nèi)?

3)從第一小組中選出2人,第三小組中選出3人組成隊(duì)伍代表學(xué)校參加區(qū)里的小學(xué)生體質(zhì)測試,在測試的某一環(huán)節(jié),需要從這5人中任選兩人參加測試,求這兩人來自同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年美國數(shù)學(xué)家阿佩爾與哈肯證明了四色定理.其內(nèi)容是:任意一張平面地圖只用四種顏色就能使具有共同邊界的國家涂上不同的顏色.用數(shù)學(xué)語言表示為將平面任意地細(xì)分為不相重疊的區(qū)域,每一個(gè)區(qū)域總可以用1,2,3,4四個(gè)數(shù)字之一標(biāo)記,而不會使相鄰的兩個(gè)區(qū)域得到相同的數(shù)字.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線圍成的各區(qū)域(如區(qū)域D由兩個(gè)邊長為1的小正方形構(gòu)成)上分別標(biāo)有數(shù)字1,23,4的四色地圖符合四色定理,區(qū)域A、B、CD、EF標(biāo)記的數(shù)字丟失若在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為4的區(qū)域的概率是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線y=a分別與直線y=2x-3,曲線y=ex-xx≥0)交于點(diǎn)A,B,則|AB|的最小值為( 。

A. B. C. eD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,,點(diǎn)的中點(diǎn).

(1)證明:直線平面;

(2)求異面直線所成角的余弦值;

(3)求平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為梯形,,,,平面分別是的中點(diǎn).

)求證:平面;

)若與平面所成的角為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱中,底面是矩形,交于點(diǎn),.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣bx+lnx,(a,b∈R).

(1)若a=1,b=3,求函數(shù)f(x)的單調(diào)增區(qū)間;

(2)若b=0時(shí),不等式f(x)≤0在[1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;

(3)當(dāng)a=1,b>時(shí),記函數(shù)f(x)的導(dǎo)函數(shù)f(x)的兩個(gè)零點(diǎn)是x1和x2(x1<x2),求證:f(x1)﹣f(x2)>﹣3ln2.

查看答案和解析>>

同步練習(xí)冊答案