【題目】如圖,在四棱錐P-ABCD中,平面PCD,,EAD的中點(diǎn),ACBE相交于點(diǎn)O.

1)證明:平面ABCD.

2)求直線BC與平面PBD所成角的正弦值.

【答案】(1)證明見解析(2)

【解析】

1)通過證明平面,得到,再證即可證得平面ABCD.

2)建立空間直角坐標(biāo)系,求出平面的法向量、直線的方向向量,利用空間向量法求出線面角的正弦值.

1)證明:平面PCD,平面,,

,的中點(diǎn),則.

四邊形BCDE為平行四邊形,,.

,且EAD的中點(diǎn),四邊形ABCE為正方形,,又平面,

平面,則.

平面平面,,

,為等腰直角三角形,

O為斜邊AC上的中點(diǎn),平面ABCD.

2)解:以O為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系O-xyz,如圖所示

不妨設(shè),則,

.

設(shè)平面PBD的法向量為,

,得.

設(shè)BC與平面所成角為,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠質(zhì)檢部門要對(duì)該廠流水線生產(chǎn)出的一批產(chǎn)品進(jìn)行檢驗(yàn),如果檢查到第件仍未發(fā)現(xiàn)不合格品,則此次檢查通過且認(rèn)為這批產(chǎn)品合格,如果在尚未抽到第件時(shí)已檢查到不合格品則拒絕通過且認(rèn)為這批產(chǎn)品不合格.設(shè)這批產(chǎn)品的數(shù)量足夠大,可以認(rèn)為每次檢查查到不合格品的概率都為,即每次抽查的產(chǎn)品是相互獨(dú)立的.

1)若,求這批產(chǎn)品能夠通過檢查的概率;

2)已知每件產(chǎn)品質(zhì)檢費(fèi)用為50元,若,設(shè)對(duì)這批產(chǎn)品的質(zhì)檢個(gè)數(shù)記作,求的分布列;

3)在(2)的條件下,已知1000批此類產(chǎn)品,若,則總平均檢查費(fèi)用至少需要多少元?(總平均檢查費(fèi)用每批次平均檢查費(fèi)用批數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線l的參數(shù)方程為:t為參數(shù)),直線l與曲線C分別交于MN兩點(diǎn).

1)寫出曲線C和直線l的普通方程;

2)若點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形、的邊長都是1,而且平面、互相垂直.點(diǎn)M上移動(dòng),點(diǎn)N上移動(dòng),若.

1)當(dāng)a為何值時(shí),的長最;

2)當(dāng)長最小時(shí),求面與面所成的二面角α的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,點(diǎn)在此拋物線上,,不過原點(diǎn)的直線與拋物線C交于A,B兩點(diǎn),以AB為直徑的圓M過坐標(biāo)原點(diǎn).

(1)求拋物線C的方程;

(2)證明:直線恒過定點(diǎn);

(3)若線段AB中點(diǎn)的縱坐標(biāo)為2,求此時(shí)直線和圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若處的切線的方程為,求,的值并求此時(shí)的最值;

2)在(1)的條件下,不等式時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若曲線在點(diǎn)處的切線與直線垂直,求的值與曲線在點(diǎn)處的切線方程;

(Ⅱ)若,且當(dāng)時(shí), 恒成立,求的最大值.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求fx)的單調(diào)區(qū)間;

2)當(dāng)x0時(shí),exax2xa0成立,求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知是正三角形,若平面,平面平面,且

1)求證:平面

2)若平面,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案