13.若$f(x)=\frac{2x}{x+1}$,則$f(\frac{1}{2019})+f(\frac{1}{2018})+…+f(\frac{1}{2})+f(1)+f(2)+…f(2019)$=4037.

分析 先求出f($\frac{1}{x}$)+f(x)=2,由此能求出$f(\frac{1}{2019})+f(\frac{1}{2018})+…+f(\frac{1}{2})+f(1)+f(2)+…f(2019)$的值.

解答 解:∵$f(x)=\frac{2x}{x+1}$,
∴f($\frac{1}{x}$)+f(x)=$\frac{\frac{2}{x}}{\frac{1}{x}+1}$+$\frac{2x}{x+1}$=$\frac{2}{x+1}+\frac{2x}{x+1}$=2,
∴$f(\frac{1}{2019})+f(\frac{1}{2018})+…+f(\frac{1}{2})+f(1)+f(2)+…f(2019)$
=2018×2+f(1)
=4036+$\frac{2}{1+1}$=4037.
故答案為:4037.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知點M的直角坐標(biāo)為(-3,-3,3),則它的柱坐標(biāo)為( 。
A.$(3\sqrt{2},\frac{π}{4},3)$B.$(3\sqrt{2},\frac{3π}{4},1)$C.$(3\sqrt{2},\frac{5π}{4},3)$D.$(3\sqrt{2},\frac{7π}{4},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.對于任意實數(shù)a、b、c、d,下列結(jié)論中正確的個數(shù)是(  )
①若a>b,c≠0,則ac>bc;②若a>b,則ac2>bc2;③若ac2>bc2,則a>b.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|y=lg(-x2+2x+3)},且A∩B=∅,則集合B的可能是( 。
A.{2,5}B.(-∞,-1)C.(1,2)D.{x|x2≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.?dāng)?shù)列0,1,0,1,0,1,0,1,…的一個通項公式是( 。
A.$\frac{{{{(-1)}^n}+1}}{2}$B.$cos\frac{nπ}{2}$C.$cos\frac{(n+1)π}{2}$D.$cos\frac{(n+2)π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知等差數(shù)列{an}的首項為a1,公差為d,前n項和為Sn,且a11=-26,a51=54,求an和S20的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=ex-x-2,k為整數(shù),且當(dāng)x>0時,(x-k)f′(x)+x+1>0恒成立,則k的最大值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)y=(1og3x)2-21og3x+3的定義域為[1,27],求函數(shù)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2sinxcosx+2sin2x-1,(x∈R)
(1)求函數(shù)f(x)的最大值;
(2)若f($\frac{α}{2}$+$\frac{π}{4}$)=$\frac{4\sqrt{2}}{5}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求cosα的值.

查看答案和解析>>

同步練習(xí)冊答案