【題目】已知函數(shù).
(1)若,求函數(shù)的圖像在點(diǎn)處的切線方程;
(2)當(dāng)時,函數(shù)恒成立,求實數(shù)的取值范圍.
【答案】(Ⅰ)(Ⅱ)。
【解析】試題分析:(1)求出,求出的值可得切點(diǎn)坐標(biāo),求出的值,可得切線斜率,利用點(diǎn)斜式可得曲線在點(diǎn)處的切線方程;(2)首先根據(jù)首先,初步判斷,再證明存在唯一根 ,且函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)的最小值為,只需即可,又滿足,代入上式即可證明.
試題解析:(Ⅰ)若,則,
當(dāng)時, , ,
當(dāng)時, ,
所以所求切線方程為
(Ⅱ)由條件可得,首先,得,
而,
令其為, 恒為正數(shù),所以即單調(diào)遞增,
而, ,所以存在唯一根 ,
且函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
所以函數(shù)的最小值為,只需即可,
又滿足,代入上式可得
,
即: 恒成立,所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, , .
(1)若是的充分不必要條件,求實數(shù)的取值范圍;
(2)若,“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足以下兩個條件:①不等式的解集是②函數(shù)在上的最小值是3.
(Ⅰ)求的解析式;
(Ⅱ)若點(diǎn)在函數(shù)的圖象上,且.
(ⅰ)求證:數(shù)列為等比數(shù)列
(ⅱ)令,是否存在正實數(shù),使不等式對于一切的恒成立?若存在,指出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距m米,余下工程只需建兩端橋墩之間的橋面和橋墩.經(jīng)測算,一個橋墩的工程費(fèi)用為256萬元;距離為x米的相鄰兩墩之間的橋面工程費(fèi)用為(2+)x萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素,記余下工程的費(fèi)用為y萬元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)m=640米時,需新建多少個橋墩才能使y最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有甲、乙兩條生產(chǎn)線生產(chǎn)同種產(chǎn)品,現(xiàn)隨機(jī)從這兩條生產(chǎn)線上各抽取20件產(chǎn)品檢測質(zhì)量(單位:克),質(zhì)量值落在, 的產(chǎn)品為三等品,質(zhì)量值落在, 的產(chǎn)品為二等品,質(zhì)量值落在的產(chǎn)品為一等品.下表為從兩條生產(chǎn)線上各抽取的20件產(chǎn)品的質(zhì)量檢測情況,將頻率視為概率,從甲生產(chǎn)線上隨機(jī)抽取1件產(chǎn)品,為二等品的概率為0.2.
(1)求的值;
(2)現(xiàn)從兩條生產(chǎn)線上的三等品中各抽取1件,求這兩件產(chǎn)品的質(zhì)量均在的概率;
(3)估算甲生產(chǎn)線20個數(shù)據(jù)的中位數(shù)(保留3位有效數(shù)字).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面為梯形,,,且.
(Ⅰ)若點(diǎn)為上一點(diǎn)且,證明:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)在線段上是否存在一點(diǎn),使得?若存在,求出的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn),,為坐標(biāo)原點(diǎn),點(diǎn)滿足=+,(為實數(shù));
(1)當(dāng)點(diǎn)在軸上時,求實數(shù)的值;
(2)四邊形能否是平行四邊形?若是,求實數(shù)的值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com