16.已知函數(shù)$f(x)=\frac{x}{{|{lnx}|}}$,若關(guān)于x的方程f2(x)-(m+1)f(x)+m=0恰好有4個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為( 。
A.(0,e)B.(1,e)C.(e,2e)D.(e,+∞)

分析 判斷f(x)的單調(diào)性,作出f(x)的函數(shù)圖象,根據(jù)方程可得f(x)=1或f(x)=m,根據(jù)圖象可知f(x)=m有三解,從而得出m的范圍.

解答 解:當(dāng)x>1時(shí),f(x)=$\frac{x}{lnx}$,f′(x)=$\frac{lnx-1}{(lnx)^{2}}$,
∴f(x)在(1,e)上單調(diào)遞減,在(e,+∞)上單調(diào)遞增,
∴當(dāng)x=e時(shí),f(x)取得極小值f(e)=e,
同理可得f(x)在(0,1)上單調(diào)遞增,
作出f(x)的函數(shù)圖象如圖所示:

由f2(x)-(m+1)f(x)+m=0得f(x)=1或f(x)=m,
由圖象可知f(x)=1只有1解,
∴f(x)=m有三個(gè)解,∴m>e.
故選:D.

點(diǎn)評 本題考查了方程的解與函數(shù)圖象的關(guān)系,函數(shù)單調(diào)性的判斷與極值計(jì)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a=log0.80.9,b=log1.10.9,c=1.10.9,則a,b,c的大小關(guān)系為(  )
A.b<a<cB.a<c<bC.a<b<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知a>0,b>0,且$\sqrt{3}$是3a與3b的等比中項(xiàng),若$\frac{1}{a}$+$\frac{4}$≥2m2+3m恒成立,則實(shí)數(shù)m的取值范圍是[-3,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A、B、C分別對應(yīng)邊a,b,c.若9a2+9b2-19c2=0,求$\frac{\frac{1}{tanC}}{\frac{1}{tanA}+\frac{1}{tanB}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若α是第二象限角,且tan(π-α)=$\frac{1}{2}$,則cos($\frac{3π}{2}$-α)=-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=mlnx,g(x)=$\frac{x}{x+1}$(x>0).
(1)當(dāng)m=1時(shí),求曲線E:y=f(x)g(x)在x=1處的切線方程;
(2)當(dāng)m=1時(shí),$k=\frac{f(x)}{(x+1)g(x)}$恰有一個(gè)實(shí)數(shù)根,求k的取值范圍;
(3)討論函數(shù)F(x)=f(x)-g(x)在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在平面直角坐標(biāo)系xoy中,已知圓C:(x+1)2+y2=16,點(diǎn)A(1,0),點(diǎn)B(a,0)(|a|>3),以B為圓心,|BA|的半徑作圓,交圓C于點(diǎn)P,且的∠PBA的平分線次線段CP于點(diǎn)Q.
(I)當(dāng)a變化時(shí),點(diǎn)Q始終在某圓錐曲線τ是運(yùn)動,求曲線τ的方程;
(II)已知直線l過點(diǎn)C,且與曲線τ交于M、N兩點(diǎn),記△OCM面積為S1,△OCN面積為S2,求$\frac{S_1}{S_2}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直角梯形ABCD中,AD∥BC,∠ADC=90°,A(-3,-10),B (-2,-1),C(3,4),
(1)求邊AD和CD所在的直線方程;
(2)數(shù)列{an}的前項(xiàng)和為Sn,點(diǎn)(an,Sn)在直線CD上,求證{an}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若存在兩個(gè)正實(shí)數(shù)m、n,使得等式a(lnn-lnm)(4em-2n)=3m成立(其中e為自然對數(shù)的底數(shù)),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,0)B.(0,$\frac{3}{2e}$]C.[$\frac{3}{2e}$,+∞)D.(-∞,0)∪[$\frac{3}{2e}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案