17.已知函數(shù)f(x)=lnx+$\frac{a}{x}$(a∈R).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若方程f(x)=2存在兩個(gè)不同的實(shí)數(shù)解x1、x2,求證:x1+x2>2a.

分析 (1)求出f(x)的導(dǎo)數(shù),通過討論a的范圍,判斷f′(x)的符號(hào),得到函數(shù)的單調(diào)區(qū)間即可;
(2)根據(jù)f(x)不單調(diào),令F(x)=f(x)-2,令g(x)=F(2a-x)-F(x),x∈[a,2a),求出g(x)的單調(diào)性,得到f(x2)>f(2a-x1),從而證出結(jié)論.

解答 解:(1)函數(shù)f(x)的定義域?yàn)椋海?,+∞)…(1分),
$f'(x)=\frac{1}{x}-\frac{a}{x^2}=\frac{x-a}{x^2}$…(3分)
當(dāng)a≤0時(shí),f′(x)>0,f(x)的單調(diào)遞增區(qū)間為(0,+∞)…(4分)
當(dāng)a>0時(shí),當(dāng)x>a時(shí),f′(x)>0,f(x)的單調(diào)遞增區(qū)間為(a,+∞);…(5分)
當(dāng)x∈(0,a)時(shí),f′(x)<0,f(x)的單調(diào)遞減區(qū)間為(0,a);…(6分)
當(dāng)x=a時(shí),f′(x)=0,f(a)為f(x)的極小值;
(2)方程f(x)=2存在兩個(gè)不同的實(shí)數(shù)解x1、x2,
因此f(x)必能不為單調(diào)函數(shù),所以a>0,…(7分)
令F(x)=f(x)-2,則F(x)的單調(diào)遞減區(qū)間為(0,a),單調(diào)遞增區(qū)間為(a,+∞),最小值F(a)<0,
∴0<x1<a<x2,令g(x)=F(2a-x)-F(x),x∈[a,2a),
∵g′(x)=F′(2a-x)-F′(x)=f′(2a-x)-f′(x)=$\frac{{4a{{(x-a)}^2}}}{{{{(2a-x)}^2}•{x^2}}}>0$…(8分)
∴g(x)在[a,2a)上單調(diào)遞增,且g(a)=0,∴當(dāng)x∈(a,2a)時(shí),g(x)>0,
∵2a-x1∈(a,2a),∴g(2a-x1)>0,
g(2a-x1)=F(x1)-F(2a-x1)=f(x1)-f(2a-x1)>0…(10分)
∵f(x1)=f(x2)=2,∴f(x2)>f(2a-x1)…(11分)
∵f(x)的單調(diào)遞增區(qū)間為(a,+∞),x2、2a-x1∈(a,+∞)
∴x2>2a-x1,∴x1+x2>2a…(12分)

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,轉(zhuǎn)化思想,有一定的難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x-y≤0\\ x+y≥0\\ y≤3a\end{array}\right.$,且z=2x+3y的最大值是15,則實(shí)數(shù)a的值為( 。
A.5B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥0}\\{x-2y+2≥0}\\{mx-y≤0}{\;}\end{array}\right.$,若z=x-y的最大值為2,則實(shí)數(shù)m等于( 。
A.-$\frac{2}{3}$B.-1C.1D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,那么四棱錐D1-ABCD的體積是( 。
A.$\frac{1}{2}{a^3}$B.$\frac{1}{3}{a^3}$C.$\frac{1}{4}{a^3}$D.$\frac{1}{6}{a^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如果一個(gè)正三棱錐的底面邊長(zhǎng)為6,側(cè)棱長(zhǎng)為$\sqrt{15}$,那么這個(gè)三棱錐的體積是(  )
A.$\frac{9}{2}$B.9C.$\frac{27}{2}$D.$\frac{{9\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P是l上一點(diǎn),直線PF與拋物線C相交于A,B兩點(diǎn),若$\overrightarrow{FP}$=3$\overrightarrow{FA}$,則|AB|=(  )
A.5B.$\frac{16}{3}$C.$\frac{22}{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知三點(diǎn)P(5,2)、F1(-6,0)、F2(6,0)那么以F1、F2為焦點(diǎn)且過點(diǎn)P的橢圓的短軸長(zhǎng)為( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸長(zhǎng)為2,離心率e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓交于不同的兩點(diǎn)A,B,與圓x2+y2=$\frac{2}{3}$相切于點(diǎn)M.
(i)證明:OA⊥OB(O為坐標(biāo)原點(diǎn));
(ii)設(shè)λ=$\frac{{|{AM}|}}{{|{BM}|}}$,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某醫(yī)學(xué)院讀書協(xié)會(huì)研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會(huì)分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖的頻數(shù)分布直方圖:
該協(xié)會(huì)確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(2)已知選取的是1月與6月的兩組數(shù)據(jù):
(i)請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)y關(guān)于晝夜溫差x的線性回歸方程;
(ii)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該協(xié)會(huì)所得線性回歸方程是否理想?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案