【題目】在如圖所示的空間幾何體中,平面平面都是邊長為2的等邊三角形,與平面所成的角為60°,且點(diǎn)在平面上的射影落在的平分線上.

(1)求證:平面;

(2)求四面體的體積.

【答案】(1)字幕見解析;(2).

【解析】

試題分析:(1)的中點(diǎn),連接,根據(jù)等邊三角形的性質(zhì)可知平面,作平面,那么,通過計(jì)算證明四邊形是平行四邊形,故,由此可得平面;2)由(1)知為高,故.

試題解析:

(1)由題意知為邊長2的等邊的中點(diǎn),連接,則,又平面平面,平面,作平面,那么,根據(jù)題意,點(diǎn)落在上,和平面所成的角為60°,,

,,四邊形是平行四邊形,

平面平面,平面...............4分

(2)....................12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,平面,,,點(diǎn),分別為,的中點(diǎn).

(1)求證:平面;

(2)是線段上的點(diǎn),且平面.

①確定點(diǎn)的位置;

②求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心在軸上的圓與直線切于點(diǎn).

(1)求圓的標(biāo)準(zhǔn)方程;

(2)已知,經(jīng)過原點(diǎn),且斜率為正數(shù)的直線與圓交于兩點(diǎn).

(。┣笞C: 為定值;

(ⅱ)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次高三年級統(tǒng)一考試中,數(shù)學(xué)試卷有一道滿分10分的選做題,學(xué)生可以從,兩道題目中任選一題作答.某校有900名高三學(xué)生參加了本次考試,為了了解該校學(xué)生解答該選做題的得分情況,計(jì)劃從900名考生的選做題成績中隨機(jī)抽取一個(gè)容量為10的樣本,為此將900名考生選做題的成績按照隨機(jī)順序依次編號為001一900.

(1)若采用隨機(jī)數(shù)表法抽樣,并按照以下隨機(jī)數(shù)表,以方框內(nèi)的數(shù)字5為起點(diǎn),從左向右依次讀取數(shù)據(jù),每次讀取三位隨機(jī)數(shù),一行讀數(shù)用完之后接下一行左端.寫出樣本編號的中位數(shù);

(2)若采用系統(tǒng)抽樣法抽樣,且樣本中最小編號為08,求樣本中所有編號之和:

(3)若采用分層軸樣,按照學(xué)生選擇題目或題目,將成績分為兩層,且樣本中題目的成績有8個(gè),平均數(shù)為7,方差為4:樣本中題目的成績有2個(gè),平均數(shù)為8,方差為1.用樣本估計(jì)900名考生選做題得分的平均數(shù)與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為的正方體中,的中點(diǎn),上任意一點(diǎn),,上任意兩點(diǎn),且的長為定值,則下面的四個(gè)值中不為定值的是( )

A. 點(diǎn)到平面的距離B. 三棱錐的體積

C. 直線與平面所成的角D. 二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的奇函數(shù)滿足.且當(dāng)時(shí),.若對于任意,都有,則實(shí)數(shù)的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如下表:

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(2)若近幾年該農(nóng)產(chǎn)品每千克的價(jià)格 (單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.

①根據(jù)(1)中所建立的回歸方程預(yù)測該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;

②當(dāng)為何值時(shí),銷售額最大?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.

(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,且兩焦點(diǎn)的距離為,橢圓上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長為.

1)求橢圓的方程;

2)過點(diǎn)的直線交橢圓、兩點(diǎn),若,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案