【題目】如圖,三棱錐中,平面,,,點,分別為,的中點.
(1)求證:平面;
(2)是線段上的點,且平面.
①確定點的位置;
②求直線與平面所成角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線 ,其焦點到準線的距離為2,直線與拋物線交于,兩點,過,分別作拋物線的切線,,與交于點.
(Ⅰ)求的值;
(Ⅱ)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓,是圓M內(nèi)一個定點,P是圓上任意一點,線段PN的垂直平分線l和半徑MP相交于點Q,當點P在圓M上運動時,點Q的軌跡為曲線E.
(1)求曲線E的方程;
(2)已知拋物線上,是否存在直線m與曲線E交于G,H,使得G,H中點F落在直線y=2x上,并且與拋物線相切,若直線m存在,求出直線m的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型超市公司計劃在市新城區(qū)開設(shè)分店,為確定在新城區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)統(tǒng)計后得到下列信息(其中表示在該區(qū)開設(shè)分店的個數(shù),表示這個分店的年收入之和):
分店個數(shù)(個) | 2 | 3 | 4 | 5 | 6 |
年收入(萬元) | 250 | 300 | 400 | 450 | 600 |
(Ⅰ)該公司經(jīng)過初步判斷,可用線性回歸模型擬合與的關(guān)系,求關(guān)于的回歸方程;
(Ⅱ)假設(shè)該公司每年在新城區(qū)獲得的總利潤(單位:萬元)與,之間的關(guān)系為,請根據(jù)(Ⅰ)中的線性回歸方程,估算該公司在新城區(qū)開設(shè)多少個分店時,才能使新城區(qū)每年每個分店的平均利潤最大.
參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為: ,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若直線與函數(shù)的圖象相切,求實數(shù)的值;
(2)若存在,,使,且,求實數(shù)的取值范圍;
(3)當時,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知點是拋物線上一定點,直線的傾斜角互補,且與拋物線另交于,兩個不同的點.
(1)求點到其準線的距離;
(2)求證:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的空間幾何體中,平面平面與都是邊長為2的等邊三角形,與平面所成的角為60°,且點在平面上的射影落在的平分線上.
(1)求證:平面;
(2)求四面體的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com