【題目】在三棱錐中,是正三角形,面,、分別是、的中點.

1)證明:;

2)求二面角的余弦值.

【答案】1)見解析;(2.

【解析】

1)取的中點,連接、,由等腰三角形三線合一的性質得出,利用直線與平面垂直的判定定理可證明出,從而得出;

2)利用面面垂直的性質定理證明出平面,以為坐標原點,分別以所在直線為軸、軸、軸建立空間直角坐標系,然后利用空間向量法計算出二面角的余弦值.

1)取的中點,連接、,

,,

,,又,

2)由面,平面平面,,平面,可得.

故以為坐標原點,分別以、、所在直線為軸、軸、軸,

建立如圖所示空間直角坐標系:則,,, ,.

,設為平面EFC的一個法向量

,取,則, .

為面的一個法向量,由

如圖知二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面四邊形中,等邊三角形,,以為折痕將折起,使得平面平面

(1)設的中點,求證:平面;

(2)若與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,兩焦點與短軸的一個端點的連線構成的三角形面積為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設與圓O相切的直線l交橢圓CAB兩點(O為坐標原點),求△AOB面積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某單位甲、乙、丙三個部門的員工人數(shù)分別為32,48現(xiàn)采用分層抽樣的方法從中抽取7人,進行睡眠時間的調查.

應從甲、乙、丙三個部門的員工中分別抽取多少人?

若抽出的7人中有3人睡眠不足,4人睡眠充足,現(xiàn)從這7人中隨機抽取3人做進一步的身體檢查.

X表示抽取的3人中睡眠不足的員工人數(shù),求隨機變量X的數(shù)學期望和方差;

A為事件“抽取的3人中,既有睡眠充足的員工,也有睡眠不足的員工”,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓過點,且與圓外切于點,過點作圓的兩條切線,,切點為

1)求圓的標準方程;

2)試問直線是否恒過定點?若過定點,請求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,要在河岸的一側修建一條休閑式人行道,進行圖紙設計時,建立了圖中所示坐標系,其中,軸上,且,道路的前一部分為曲線段,該曲線段為二次函數(shù)時的圖像,最高點為,道路中間部分為直線段,,且,道路的后一段是以為圓心的一段圓弧

1)求的值;

2)求的大;

3)若要在扇形區(qū)域內建一個“矩形草坪”在圓弧上運動,、上,記,則當為何值時,“矩形草坪”面積最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,已知都是邊長為的等邊三角形,中點,且平面,為線段上一動點,記

(1)當時,求異面直線所成角的余弦值;

(2)當與平面所成角的正弦值為時,求的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)若直線與曲線恒相切于同一定點,求直線的方程;

(2)若當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在定義域上的導函數(shù)為,若函數(shù)沒有零點,且,當上與上的單調性相同時,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案