【題目】如圖,要在河岸的一側修建一條休閑式人行道,進行圖紙設計時,建立了圖中所示坐標系,其中,在軸上,且,道路的前一部分為曲線段,該曲線段為二次函數在時的圖像,最高點為,道路中間部分為直線段,,且,道路的后一段是以為圓心的一段圓弧.
(1)求的值;
(2)求的大。
(3)若要在扇形區(qū)域內建一個“矩形草坪”,在圓弧上運動,、在上,記,則當為何值時,“矩形草坪”面積最大.
科目:高中數學 來源: 題型:
【題目】2019年2月13日《煙臺市全民閱讀促進條例》全文發(fā)布,旨在保障全民閱讀權利,培養(yǎng)全民閱讀習慣,提高全民閱讀能力,推動文明城市和文化強市建設.某高校為了解條例發(fā)布以來全校學生的閱讀情況,隨機調查了200名學生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.
(1)求這200名學生每周閱讀時間的樣本平均數和樣本方差(同一組中的數據用該組區(qū)間的中間值代表);
(2)由直方圖可以認為,目前該校學生每周的閱讀時間服從正態(tài)分布,其中近似為樣本平均數,近似為樣本方差.
(i)一般正態(tài)分布的概率都可以轉化為標準正態(tài)分布的概率進行計算:若,令,則,且.利用直方圖得到的正態(tài)分布,求.
(ii)從該高校的學生中隨機抽取20名,記表示這20名學生中每周閱讀時間超過10小時的人數,求(結果精確到0.0001)以及的數學期望.
參考數據:,.若,則.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為(t為參數).
(1)寫出直線l的普通方程與曲線C的直角坐標方程;
(2)設曲線C經過伸縮變換得到曲線,設M(x,y)為上任意一點,求的最小值,并求相應的點M的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:的兩個焦點分別為,,點P是橢圓上的任意一點,且的最大值為4,橢圓C的離心率與雙曲線的離心率互為倒數.
Ⅰ求橢圓C的方程;
Ⅱ設點,過點P作兩條直線,與圓相切且分別交橢圓于M,N,求證:直線MN的斜率為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高三年級有500名學生,為了了解數學科的學習情況,現(xiàn)從中隨機抽出若干名學生在一次測試中的數學成績,制成如下頻率分布表:
分組 | 頻數 | 頻率 |
12 | ||
4 | ||
合計 |
根據上面圖表,求處的數值
在所給的坐標系中畫出的頻率分布直方圖;
根據題中信息估計總體平均數,并估計總體落在中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,,.為的中點.
(1)若點為的中點,求證:平面;
(2)當平面平面時,線段上是否存在一點,使得平面與平面所成銳二面角的大小為?若存在,求出點的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E:1(a>0)的中心為原點O,左、右焦點分別為F1、F2,離心率為,點P是直線x上任意一點,點Q在橢圓E上,且滿足0.
(1)試求出實數a;
(2)設直線PQ與直線OQ的斜率分別為k1與k2,求積k1k2的值;
(3)若點P的縱坐標為1,過點P作動直線l與橢圓交于不同的兩點M、N,在線段MN上取異于點M、N的點H,滿足,證明點H恒在一條定直線上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題:①設A,B為兩個集合,則“”是“”的充分不必要條件;②,;③“”是“”的充要條件;④,代數式的值都是質數.其中的真命題是________.(填寫序號)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com