3.已知;$f(n)=\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}$,則f(n+1)-f(n)=( 。
A.$\frac{1}{2n+1}+\frac{1}{2n+2}$B.$\frac{1}{2n+2}-\frac{1}{n+1}$
C.$\frac{1}{2n+2}$D.$\frac{1}{2n+1}+\frac{1}{2n+2}-\frac{1}{n+1}$

分析 利用$f(n)=\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}$,計(jì)算f(n+1)-f(n)即可.

解答 解:∵$f(n)=\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}$,
∴f(n+1)-f(n)=$\frac{1}{2n+1}+\frac{1}{2n+2}-\frac{1}{n+1}$,
故選:D.

點(diǎn)評(píng) 本題考查歸納推理,考查學(xué)生的計(jì)算能力,正確計(jì)算是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在△ABC中,已知三個(gè)內(nèi)角為A,B,C滿足sinA:sinB:sinC=6:5:4,則sinB=( 。
A.$\frac{{\sqrt{7}}}{4}$B.$\frac{3}{4}$C.$\frac{{5\sqrt{7}}}{16}$D.$\frac{9}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)f(x)=2|x|-|x+3|.
(1)求函數(shù)y=f(x)的最小值;
(2)求不等式f(x)≤7的解集S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知x1,x2是方程(x-1)2=-3的兩個(gè)相異根,當(dāng)x1=1-$\sqrt{3}$i(i為虛數(shù)單位)時(shí),則x22為(  )
A.4+2$\sqrt{3}$iB.-2+2$\sqrt{3}$iC.4-2$\sqrt{3}$iD.-2-2$\sqrt{3}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,已知復(fù)平面內(nèi)平行四邊形ABCD中,點(diǎn)A對(duì)應(yīng)的復(fù)數(shù)為-1,$\overrightarrow{AB}$對(duì)應(yīng)的復(fù)數(shù)為2+2i,$\overrightarrow{BC}$對(duì)應(yīng)的復(fù)數(shù)為4-4i.
(Ⅰ)求D點(diǎn)對(duì)應(yīng)的復(fù)數(shù);
(Ⅱ)求平行四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知a=log2$\frac{1}{8}$,b=0.33.2,c=3.20.3,則實(shí)數(shù)a,b,c的大小關(guān)系是( 。
A.a<c<bB.a<b<cC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.以下說(shuō)法錯(cuò)誤的是(  )
A.推理一般分為合情推理和演繹推理
B.歸納是從特殊到一般的過(guò)程,它屬于合情推理
C.在數(shù)學(xué)中,證明命題的正確性既能用演繹推理又能用合情推理
D.演繹推理經(jīng)常使用的是由大前提、小前提得到結(jié)論的三段論推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.閱讀材料:根據(jù)兩角和與差的正弦公式,有:
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=β 有α=$\frac{A+B}{2}$,β=$\frac{A-B}{2}$代入③得 sinA+sinB=2sin$\frac{A+B}{2}$cos$\frac{A-B}{2}$.
(1)利用上述結(jié)論,試求sin15°+sin75°的值;
(2)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin$\frac{A+B}{2}$cos$\frac{A-B}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.拋物線x=$\frac{1}{4}$y2的焦點(diǎn)坐標(biāo)為(1,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案