【答案】
分析:(1)求導(dǎo)f′(x)=
,要使“f(x)為單調(diào)增函數(shù)”,轉(zhuǎn)化為“f′(x)≥0恒成立”,再轉(zhuǎn)化為“p≥
=
恒成立”,由最值法求解.同理,要使“f(x)為單調(diào)減函數(shù)”,轉(zhuǎn)化為“f′(x)≤0恒成立”,再轉(zhuǎn)化為“p≤
=
恒成立”,由最值法求解,最后兩個(gè)結(jié)果取并集.
(2)因?yàn)椤霸赱1,e]上至少存在一點(diǎn)x
,使得f(x
)>g(x
)成立”,要轉(zhuǎn)化為“f(x)
max>g(x)
min”解決,易知g(x)=
在[1,e]上為減函數(shù),所以g(x)∈[2,2e],①當(dāng)p≤0時(shí),f(x)在[1,e]上遞減;②當(dāng)p≥1時(shí),f(x)在[1,e]上遞增;③當(dāng)0<p<1時(shí),兩者作差比較.
解答:解:(1)f′(x)=
,要使“f(x)為單調(diào)增函數(shù)”,轉(zhuǎn)化為“f′(x)≥0恒成立”,即p≥
=
恒成立,又
,所以當(dāng)p≥1時(shí),f(x)在(0,+∞)為單調(diào)增函數(shù).
同理,要使“f(x)為單調(diào)減函數(shù)”,轉(zhuǎn)化為“f′(x)≤0恒成立,再轉(zhuǎn)化為“p≤
=
恒成立”,又
,所以當(dāng)p≤0時(shí),f(x)在(0,+∞)為單調(diào)減函數(shù).
綜上所述,f(x)在(0,+∞)為單調(diào)函數(shù),p的取值范圍為p≥1或p≤0
(2)因g(x)=
在[1,e]上為減函數(shù),所以g(x)∈[2,2e]
①當(dāng)p≤0時(shí),由(1)知f(x)在[1,e]上遞減⇒f(x)
max=f(1)=0<2,不合題意
②當(dāng)p≥1時(shí),由(1)知f(x)在[1,e]上遞增,f(1)<2,又g(x)在[1,e]上為減函數(shù),
故只需f(x)
max>g(x)
min,x∈[1,e],
即:f(e)=p(e-
)-2lne>2⇒p>
.
③當(dāng)0<p<1時(shí),因x-
≥0,x∈[1,e]
所以f(x)=p(x-
)-2lnx≤(x-
)-2lnx≤e-
-2lne<2不合題意
綜上,p的取值范圍為(
,+∞)
點(diǎn)評:本題主要考查用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,基本思路是:當(dāng)函數(shù)為增函數(shù)時(shí),導(dǎo)數(shù)大于等于零;當(dāng)函數(shù)為減函數(shù)時(shí),導(dǎo)數(shù)小于等于零,已知單調(diào)性求參數(shù)的范圍往往轉(zhuǎn)化為求相應(yīng)函數(shù)的最值問題.