已知i是虛數(shù)單位,z(1-i)=
1+i
1-i
,則z2=( 。
A、1-
1
2
i
B、1+i
C、-
1
2
i
D、-
1
4
i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則即可得出.
解答: 解:z(1-i)=
1+i
1-i
,z(1-i)(1+i)=
(1+i)(1+i)2
(1-i)(1+i)
,化為2z=
2i(1+i)
2
,∴z=-
1
2
+
1
2
i

∴z2=-
1
2
i.
故選:C.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題是真命題的有
 

①若m是兩個(gè)正數(shù)2,8的等比中項(xiàng),則圓錐曲線x2+
y2
m
=1的離心率為
3
2
5
;
②若過(guò)雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的一個(gè)焦點(diǎn)作它的一條漸近線的垂線,垂足為M,O為坐標(biāo)原點(diǎn),則|OM|=a;
③已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,且過(guò)點(diǎn)M(3,0),則橢圓的標(biāo)準(zhǔn)方程是 
x2
9
+
y2
81
=1;
④若x2+y2=2,則2x+y的最大植為4;
⑤直線l:x-2y+2=0過(guò)橢圓的左焦點(diǎn)F1和一個(gè)頂點(diǎn)B,該橢圓的離心率為
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“若x=3,則x2-9x+18=0”,那么它的逆命題、否命題與逆否命題這三個(gè)命題中,真命題的個(gè)數(shù)有( 。
A、0 個(gè)B、1個(gè)
C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題,其中正確的命題是( 。
A、命題“若a<b,則am2<bm2
B、“a≤2”是“對(duì)任意的實(shí)數(shù)x,|x+1|+|x-1|≥a成立”的充分不必要條件
C、設(shè)隨機(jī)變量ξ服從N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=
1
2
-p
D、命題“?x∈R,x2-x>0”的否定是:“?x∈R,x2-x<0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=
1+2i
i5
,則它的共軛復(fù)數(shù)
.
z
等于(  )
A、2-iB、2+i
C、-2+iD、-2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)的定義域?yàn)镽,那么“?x0∈R,f(-x0)=-f(x0)”是“f(x)為奇函數(shù)”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若α是第四象限角,則180°-α是( 。
A、第一象限角
B、第二象限角
C、第三象限角
D、第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=0.5-0.6,b=0.81.2,c=log20.125,則它們從小到大為( 。
A、c<b<a
B、a<b<c
C、a<c<b
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a1,a2,a3,a4成等比數(shù)列,其公比為2,則
a1a3
a2a4
的值為(  )
A、
1
8
B、
1
2
C、
1
4
D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案